- home
- Search
- Energy Research
- 2016-2025
- 13. Climate action
- 12. Responsible consumption
- 1. No poverty
- University of California System
- Energy Research
- 2016-2025
- 13. Climate action
- 12. Responsible consumption
- 1. No poverty
- University of California System
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Elsevier BV David R. Cocker; Martin M. Shafer; Dagmara S. Antkiewicz; Christopher R. Ruehl; Thomas D. Durbin; Jiacheng Yang; Patrick Roth; Georgios Karavalakis; Georgios Karavalakis; Akua Asa-Awuku;pmid: 30308806
We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/1n482770Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/1n482770Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United KingdomPublisher:University of Chicago Press Funded by:NSF | Understanding the tempera...NSF| Understanding the temperature dependence of consumer-resource interactionsAuthors: Pawar, S; Dell, AI; Savage, VM; Knies, JL;Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r89g9k4Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/684590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r89g9k4Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/684590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 29 Jul 2021 United Kingdom, Norway, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:RCN | Centre for Arctic Gas Hyd...RCN| Centre for Arctic Gas Hydrate, Environment and Climate (CAGE)Mervyn Greaves; Sönke Szidat; Sönke Szidat; James W. B. Rae; Katarzyna Zamelczyk; Mathis P. Hain; Tine Lander Rasmussen; Thomas M Marchitto; Thomas M Marchitto; Mohamed Ezat; Luke C Skinner;handle: 10037/22013 , 10023/23685
AbstractThe Fram Strait is the only deep gateway between the Arctic Ocean and the Nordic Seas and thus is a key area to study past changes in ocean circulation and the marine carbon cycle. Here, we study deep ocean temperature, δ18O, carbonate chemistry (i.e., carbonate ion concentration [CO32−]), and nutrient content in the Fram Strait during the late glacial (35,000–19,000 years BP) and the Holocene based on benthic foraminiferal geochemistry and carbon cycle modeling. Our results indicate a thickening of Atlantic water penetrating into the northern Nordic Seas, forming a subsurface Atlantic intermediate water layer reaching to at least ∼2,600 m water depth during most of the late glacial period. The recirculating Atlantic layer was characterized by relatively high [CO32−] and low δ13C during the late glacial, and provides evidence for a Nordic Seas source to the glacial North Atlantic intermediate water flowing at 2,000–3,000 m water depth, most likely via the Denmark Strait. In addition, we discuss evidence for enhanced terrestrial carbon input to the Nordic Seas at ∼23.5 ka. Comparing our δ13C and qualitative [CO32−] records with results of carbon cycle box modeling suggests that the total terrestrial CO2 release during this carbon input event was low, slow, or directly to the atmosphere.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2021 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10023/23685Data sources: Bielefeld Academic Search Engine (BASE)Paleoceanography and PaleoclimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021pa004216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2021 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10023/23685Data sources: Bielefeld Academic Search Engine (BASE)Paleoceanography and PaleoclimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021pa004216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United StatesPublisher:Springer Science and Business Media LLC Christine Shearer; Chaopeng Hong; Steven J. Davis; Steven J. Davis; Yue Qin; Qiang Zhang; Ken Caldeira; Yixuan Zheng; Yixuan Zheng; Dan Tong; Dan Tong;Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/20m965f3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1364-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 593 citations 593 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/20m965f3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1364-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, Switzerland, ItalyPublisher:Elsevier BV Funded by:NSF | Collaborative Research: C..., NSF | NSF Engineering Research ...NSF| Collaborative Research: CRISP Type 2: Revolution through Evolution: A Controls Approach to Improve How Society Interacts with Electricity ,NSF| NSF Engineering Research Center for Ultra-wide-area Resilient Electric Energy Transmission NetworkChen C. -F.; Hong T.; de Rubens G. Z.; Yilmaz S.; Bandurski K.; Belafi Z. D.; De Simone M.; Bavaresco M. V.; Wang Y.; Liu P. -L.; Barthelmes V. M.; Adams J.; D'Oca S.; Przybylski L.;handle: 20.500.11770/311681 , 20.500.12876/7wbOKZ8v
This study investigates human-building interaction in office spaces across multiple countries including Brazil, Italy, Poland, Switzerland, the United States, and Taiwan. We analyze social-psychological, contextual, and demographic factors to explain cross-country differences in adaptive thermal actions (i.e. cooling and heating behaviors) and conformity to the norms of sharing indoor environmental control features, an indicator of energy consumption. Specifically, personal adjustments such as putting on extra clothes are generally preferred over technological solutions such as adjusting thermostats in reaction to thermal discomfort. Social-psychological factors including attitudes, perceived behavioral control, injunctive norms, and perceived impact of indoor environmental quality on work productivity influence occupants’ intention to conform to the norms of sharing environmental control features. Lastly, accessibility to environmental control features, office type, gender, and age are also important factors. These findings demonstrate the roles of social-psychological and certain contextual factors in occupants’ interactions with building design as well as their behavior of sharing environmental control features, both of which significantly influence building energy consumption, and thus, broader decarbonization.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vj5z3xfData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vj5z3xfData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Springer Science and Business Media LLC Authors: Patricola, Christina M;The speed at which tropical cyclones travel has slowed globally in the past seven decades, especially over some coastlines. This effect can compound flooding by increasing regional total rainfall from storms. The speed at which tropical cyclones travel has slowed globally in the past seven decades, especially over some coastlines. This effect can compound flooding by increasing regional total rainfall from storms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/36b9b33vData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05303-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/36b9b33vData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05303-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Canada, United States, LithuaniaPublisher:SAGE Publications Andrew K. Jorgenson; Brett Clark; Ryan P. Thombs; Jeffrey Kentor; Jennifer E. Givens; Xiaorui Huang; Hassan El Tinay; Daniel Auerbach; Matthew C. Mahutga;Building on cornerstone traditions in historical sociology, as well as work in environmental sociology and political-economic sociology, we theorize and investigate with moderation analysis how and why national militaries shape the effect of economic growth on carbon pollution. Militaries exert a substantial influence on the production and consumption patterns of economies, and the environmental demands required to support their evolving infrastructure. As far-reaching and distinct characteristics of contemporary militarization, we suggest that both the size and capital intensiveness of the world’s militaries enlarge the effect of economic growth on nations’ carbon emissions. In particular, we posit that each increases the extent to which the other amplifies the effect of economic growth on carbon pollution. To test our arguments, we estimate longitudinal models of emissions for 106 nations from 1990 to 2016. Across various model specifications, robustness checks, a range of sensitivity analyses, and counterfactual analysis, the findings consistently support our propositions. Beyond advancing the environment and economic growth literature in sociology, this study makes significant contributions to sociological research on climate change and the climate crisis, and it underscores the importance of considering the military in scholarship across the discipline.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryUniversity of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/8mt1g99qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/00031224231169790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryUniversity of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/8mt1g99qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/00031224231169790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Kevin A. Reed; Naomi Goldenson; Richard Grotjahn; William J. Gutowski; Kripa Jagannathan; Andrew D. Jones; L. Ruby Leung; Seth A. McGinnis; Sara C. Pryor; Abhishekh K. Srivastava; Paul A. Ullrich; Colin M. Zarzycki;doi: 10.1002/wcc.799
handle: 20.500.12876/Dw88xxmw
AbstractIn climate science and applications, the term “metric” is used to describe the distillation of complex, multifaceted evaluations to summarize the overall quality of a model simulation, or other data product, and/or as a means to quantify some response to climate change. Metrics provide insights into the fidelity of processes and outcomes from climate models and can assist with both differentiating models' representation of variables or processes and informing whether models are “fit for purpose.” Metrics can also provide a valuable reference point for co‐production of knowledge between climate scientists and climate impact practitioners. Although continued metric developments enable model developers to better understand the impacts of decisions made in the model design process, metrics also have implications for the characterization of uncertainty and facilitating analyses of underlying physical processes. As a result, comprehensive evaluation with multiple metrics enhances usability of climate information by both scientific and stakeholder communities. This paper presents examples of insights gained from the development and appropriate use of metrics, and provides examples of how metrics can be used to engage with stakeholders and inform decision‐making.This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Social Status of Climate Change Knowledge > Climate Science and Decision Making Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/0h53d79jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWiley Interdisciplinary Reviews Climate ChangeArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/0h53d79jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWiley Interdisciplinary Reviews Climate ChangeArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Graduate Research Fellows..., NSF | CAREER: The Lapse Rate Fe..., NSF | Downgradient Energy Trans... +3 projectsNSF| Graduate Research Fellowship Program (GRFP) ,NSF| CAREER: The Lapse Rate Feedback and Other Mechanisms of High-Latitude Climate Change ,NSF| Downgradient Energy Transport and the Atmospheric Circulation ,NSF| Collaborative Research: Testing Controls on Source, Sink, and Lifetime of Atmospheric Water with Numerical Tags and Stable Isotope Ratios ,NSF| Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework ,NSF| Collaborative Research: Transient response of regional sea level to Antarctic ice shelf fluxesDavid Bonan; Nicole Feldl; Nicholas Siler; Jennifer E Kay; Kyle Armour; Ian Eisenman; Gerard Roe;AbstractThe influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes in zonal‐mean precipitation‐minus‐evaporation (P − E) under greenhouse‐gas forcing. It is shown that cloud feedbacks act to narrow bands of tropical P − E and increase P − E in the deep tropics. The surface‐albedo feedback shifts the location of maximum tropical P − E and increases P − E in the polar regions. The intermodel spread in the P − E changes associated with feedbacks arises mainly from cloud feedbacks, with the lapse‐rate and surface‐albedo feedbacks playing important roles in the polar regions. The P − E change associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet‐gets‐wetter, dry‐gets‐drier” paradigm.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1029/2023gl106648Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8833b5t4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1029/2023gl106648Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8833b5t4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E...NSF| Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in PhotorespirationAuthors: Sattik Ghosh; Stephanie Pulford; Arnold J. Bloom;AbstractPublic understanding about complex issues such as climate change relies heavily on online resources. Yet the role that online instruction should assume in post-secondary science education remains contentious despite its near ubiquity during the COVID-19 pandemic. The objective here was to compare the performance of 1790 undergraduates taking either an online or face-to-face version of an introductory course on climate change. Both versions were taught by a single instructor, thus, minimizing instructor bias. Women, seniors, English language learners, and humanities majors disproportionately chose to enroll in the online version because of its ease of scheduling and accessibility. After correcting for performance-gaps among different demographic groups, the COVID-19 pandemic had no significant effect on online student performance and students in the online version scored 2% lower (on a scale of 0–100) than those in the face-to-face version, a penalty that may be a reasonable tradeoff for the ease of scheduling and accessibility that these students desire.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/33s8d1zwData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00506-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/33s8d1zwData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00506-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Elsevier BV David R. Cocker; Martin M. Shafer; Dagmara S. Antkiewicz; Christopher R. Ruehl; Thomas D. Durbin; Jiacheng Yang; Patrick Roth; Georgios Karavalakis; Georgios Karavalakis; Akua Asa-Awuku;pmid: 30308806
We assessed the physical, chemical and toxicological characteristics of particulate emissions from four light-duty gasoline direct injection vehicles when operated over the LA92 driving cycle. Our results showed that particle mass and number emissions increased markedly during accelerations. For three of the four vehicles tested, particulate matter (PM) mass and particle number emissions were markedly higher during cold-start and the first few accelerations following the cold-start period than during the hot running and hot-start segments of the LA92 cycle. For one vehicle (which had the highest emissions overall) the hot-start and cold-start PM emissions were similar. Black carbon emissions were also much higher during the cold-start conditions, indicating severe fuel wetting leading to slow evaporation and pool burning, and subsequent soot formation. Particle number concentrations and black carbon emissions showed large reductions during the urban and hot-start phases of the test cycle. The oxidative potential of PM was quantified with both a chemical and a biological assay, and the gene expression impacts of the PM in a macrophage model with PCR (polymerase chain reaction) and ELISA (enzyme-linked immunosorbent assay) analyses. Inter- and intra-vehicle variability in oxidative potential per milligram of PM emitted was relatively low for both oxidative assays, suggesting that real-world emissions and exposure can be estimated with distance-normalized emission factors. The PCR response from signaling markers for oxidative stress (e.g., NOX1) was greater than from inflammatory, AhR (aryl hydrocarbon receptor), or MAPK (mitogen-activated protein kinase) signaling. Protein production associated with inflammation (tumor necrosis factor alpha-TNFα) and oxidative stress (HMOX-1) were quantified and displayed relatively high inter-vehicle variability, suggesting that these pathways may be activated by different PM components. Correlation of trace metal concentrations and oxidative potential suggests a role for small, insoluble particles in inducing oxidative stress.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/1n482770Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/1n482770Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefeScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2018.09.110&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United KingdomPublisher:University of Chicago Press Funded by:NSF | Understanding the tempera...NSF| Understanding the temperature dependence of consumer-resource interactionsAuthors: Pawar, S; Dell, AI; Savage, VM; Knies, JL;Whether the thermal sensitivity of an organism's traits follows the simple Boltzmann-Arrhenius model remains a contentious issue that centers around consideration of its operational temperature range and whether the sensitivity corresponds to one or a few underlying rate-limiting enzymes. Resolving this issue is crucial, because mechanistic models for temperature dependence of traits are required to predict the biological effects of climate change. Here, by combining theory with data on 1,085 thermal responses from a wide range of traits and organisms, we show that substantial variation in thermal sensitivity (activation energy) estimates can arise simply because of variation in the range of measured temperatures. Furthermore, when thermal responses deviate systematically from the Boltzmann-Arrhenius model, variation in measured temperature ranges across studies can bias estimated activation energy distributions toward higher mean, median, variance, and skewness. Remarkably, this bias alone can yield activation energies that encompass the range expected from biochemical reactions (from ~0.2 to 1.2 eV), making it difficult to establish whether a single activation energy appropriately captures thermal sensitivity. We provide guidelines and a simple equation for partially correcting for such artifacts. Our results have important implications for understanding the mechanistic basis of thermal responses of biological traits and for accurately modeling effects of variation in thermal sensitivity on responses of individuals, populations, and ecological communities to changing climatic temperatures.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r89g9k4Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/684590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2016Full-Text: https://escholarship.org/uc/item/6r89g9k4Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2015Data sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1086/684590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 29 Jul 2021 United Kingdom, Norway, SwitzerlandPublisher:American Geophysical Union (AGU) Funded by:RCN | Centre for Arctic Gas Hyd...RCN| Centre for Arctic Gas Hydrate, Environment and Climate (CAGE)Mervyn Greaves; Sönke Szidat; Sönke Szidat; James W. B. Rae; Katarzyna Zamelczyk; Mathis P. Hain; Tine Lander Rasmussen; Thomas M Marchitto; Thomas M Marchitto; Mohamed Ezat; Luke C Skinner;handle: 10037/22013 , 10023/23685
AbstractThe Fram Strait is the only deep gateway between the Arctic Ocean and the Nordic Seas and thus is a key area to study past changes in ocean circulation and the marine carbon cycle. Here, we study deep ocean temperature, δ18O, carbonate chemistry (i.e., carbonate ion concentration [CO32−]), and nutrient content in the Fram Strait during the late glacial (35,000–19,000 years BP) and the Holocene based on benthic foraminiferal geochemistry and carbon cycle modeling. Our results indicate a thickening of Atlantic water penetrating into the northern Nordic Seas, forming a subsurface Atlantic intermediate water layer reaching to at least ∼2,600 m water depth during most of the late glacial period. The recirculating Atlantic layer was characterized by relatively high [CO32−] and low δ13C during the late glacial, and provides evidence for a Nordic Seas source to the glacial North Atlantic intermediate water flowing at 2,000–3,000 m water depth, most likely via the Denmark Strait. In addition, we discuss evidence for enhanced terrestrial carbon input to the Nordic Seas at ∼23.5 ka. Comparing our δ13C and qualitative [CO32−] records with results of carbon cycle box modeling suggests that the total terrestrial CO2 release during this carbon input event was low, slow, or directly to the atmosphere.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2021 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10023/23685Data sources: Bielefeld Academic Search Engine (BASE)Paleoceanography and PaleoclimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021pa004216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2021 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)University of St Andrews: Digital Research RepositoryArticle . 2021License: CC BY NC NDFull-Text: https://hdl.handle.net/10023/23685Data sources: Bielefeld Academic Search Engine (BASE)Paleoceanography and PaleoclimatologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefSt Andrews Research RepositoryArticle . 2021 . Peer-reviewedData sources: St Andrews Research RepositoryMunin - Open Research ArchiveArticle . 2021 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2021pa004216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United StatesPublisher:Springer Science and Business Media LLC Christine Shearer; Chaopeng Hong; Steven J. Davis; Steven J. Davis; Yue Qin; Qiang Zhang; Ken Caldeira; Yixuan Zheng; Yixuan Zheng; Dan Tong; Dan Tong;Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/20m965f3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1364-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 593 citations 593 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/20m965f3Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-019-1364-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, Switzerland, ItalyPublisher:Elsevier BV Funded by:NSF | Collaborative Research: C..., NSF | NSF Engineering Research ...NSF| Collaborative Research: CRISP Type 2: Revolution through Evolution: A Controls Approach to Improve How Society Interacts with Electricity ,NSF| NSF Engineering Research Center for Ultra-wide-area Resilient Electric Energy Transmission NetworkChen C. -F.; Hong T.; de Rubens G. Z.; Yilmaz S.; Bandurski K.; Belafi Z. D.; De Simone M.; Bavaresco M. V.; Wang Y.; Liu P. -L.; Barthelmes V. M.; Adams J.; D'Oca S.; Przybylski L.;handle: 20.500.11770/311681 , 20.500.12876/7wbOKZ8v
This study investigates human-building interaction in office spaces across multiple countries including Brazil, Italy, Poland, Switzerland, the United States, and Taiwan. We analyze social-psychological, contextual, and demographic factors to explain cross-country differences in adaptive thermal actions (i.e. cooling and heating behaviors) and conformity to the norms of sharing indoor environmental control features, an indicator of energy consumption. Specifically, personal adjustments such as putting on extra clothes are generally preferred over technological solutions such as adjusting thermostats in reaction to thermal discomfort. Social-psychological factors including attitudes, perceived behavioral control, injunctive norms, and perceived impact of indoor environmental quality on work productivity influence occupants’ intention to conform to the norms of sharing environmental control features. Lastly, accessibility to environmental control features, office type, gender, and age are also important factors. These findings demonstrate the roles of social-psychological and certain contextual factors in occupants’ interactions with building design as well as their behavior of sharing environmental control features, both of which significantly influence building energy consumption, and thus, broader decarbonization.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vj5z3xfData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/8vj5z3xfData sources: Bielefeld Academic Search Engine (BASE)Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaDigital Repository @ Iowa State UniversityArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2019.101344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Springer Science and Business Media LLC Authors: Patricola, Christina M;The speed at which tropical cyclones travel has slowed globally in the past seven decades, especially over some coastlines. This effect can compound flooding by increasing regional total rainfall from storms. The speed at which tropical cyclones travel has slowed globally in the past seven decades, especially over some coastlines. This effect can compound flooding by increasing regional total rainfall from storms.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/36b9b33vData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05303-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2018Full-Text: https://escholarship.org/uc/item/36b9b33vData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2018Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/d41586-018-05303-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Canada, United States, LithuaniaPublisher:SAGE Publications Andrew K. Jorgenson; Brett Clark; Ryan P. Thombs; Jeffrey Kentor; Jennifer E. Givens; Xiaorui Huang; Hassan El Tinay; Daniel Auerbach; Matthew C. Mahutga;Building on cornerstone traditions in historical sociology, as well as work in environmental sociology and political-economic sociology, we theorize and investigate with moderation analysis how and why national militaries shape the effect of economic growth on carbon pollution. Militaries exert a substantial influence on the production and consumption patterns of economies, and the environmental demands required to support their evolving infrastructure. As far-reaching and distinct characteristics of contemporary militarization, we suggest that both the size and capital intensiveness of the world’s militaries enlarge the effect of economic growth on nations’ carbon emissions. In particular, we posit that each increases the extent to which the other amplifies the effect of economic growth on carbon pollution. To test our arguments, we estimate longitudinal models of emissions for 106 nations from 1990 to 2016. Across various model specifications, robustness checks, a range of sensitivity analyses, and counterfactual analysis, the findings consistently support our propositions. Beyond advancing the environment and economic growth literature in sociology, this study makes significant contributions to sociological research on climate change and the climate crisis, and it underscores the importance of considering the military in scholarship across the discipline.
Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryUniversity of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/8mt1g99qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/00031224231169790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Vilnius University I... arrow_drop_down Vilnius University Institutional RepositoryArticle . 2023Data sources: Vilnius University Institutional RepositoryUniversity of California: eScholarshipArticle . 2023Full-Text: https://escholarship.org/uc/item/8mt1g99qData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/00031224231169790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Funded by:NSF | The Management and Operat...NSF| The Management and Operation of the National Center for Atmoshperic Research (NCAR)Kevin A. Reed; Naomi Goldenson; Richard Grotjahn; William J. Gutowski; Kripa Jagannathan; Andrew D. Jones; L. Ruby Leung; Seth A. McGinnis; Sara C. Pryor; Abhishekh K. Srivastava; Paul A. Ullrich; Colin M. Zarzycki;doi: 10.1002/wcc.799
handle: 20.500.12876/Dw88xxmw
AbstractIn climate science and applications, the term “metric” is used to describe the distillation of complex, multifaceted evaluations to summarize the overall quality of a model simulation, or other data product, and/or as a means to quantify some response to climate change. Metrics provide insights into the fidelity of processes and outcomes from climate models and can assist with both differentiating models' representation of variables or processes and informing whether models are “fit for purpose.” Metrics can also provide a valuable reference point for co‐production of knowledge between climate scientists and climate impact practitioners. Although continued metric developments enable model developers to better understand the impacts of decisions made in the model design process, metrics also have implications for the characterization of uncertainty and facilitating analyses of underlying physical processes. As a result, comprehensive evaluation with multiple metrics enhances usability of climate information by both scientific and stakeholder communities. This paper presents examples of insights gained from the development and appropriate use of metrics, and provides examples of how metrics can be used to engage with stakeholders and inform decision‐making.This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Social Status of Climate Change Knowledge > Climate Science and Decision Making Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/0h53d79jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWiley Interdisciplinary Reviews Climate ChangeArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BY NCFull-Text: https://escholarship.org/uc/item/0h53d79jData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of CaliforniaWiley Interdisciplinary Reviews Climate ChangeArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United StatesPublisher:American Geophysical Union (AGU) Funded by:NSF | Graduate Research Fellows..., NSF | CAREER: The Lapse Rate Fe..., NSF | Downgradient Energy Trans... +3 projectsNSF| Graduate Research Fellowship Program (GRFP) ,NSF| CAREER: The Lapse Rate Feedback and Other Mechanisms of High-Latitude Climate Change ,NSF| Downgradient Energy Transport and the Atmospheric Circulation ,NSF| Collaborative Research: Testing Controls on Source, Sink, and Lifetime of Atmospheric Water with Numerical Tags and Stable Isotope Ratios ,NSF| Collaborative Research: Assessing the Causal Influence of Atmospheric Opacity and Sea Ice on Arctic Warming in a Novel Circulation-controlled Framework ,NSF| Collaborative Research: Transient response of regional sea level to Antarctic ice shelf fluxesDavid Bonan; Nicole Feldl; Nicholas Siler; Jennifer E Kay; Kyle Armour; Ian Eisenman; Gerard Roe;AbstractThe influence of climate feedbacks on regional hydrological changes under warming is poorly understood. Here, a moist energy balance model (MEBM) with a Hadley Cell parameterization is used to isolate the influence of climate feedbacks on changes in zonal‐mean precipitation‐minus‐evaporation (P − E) under greenhouse‐gas forcing. It is shown that cloud feedbacks act to narrow bands of tropical P − E and increase P − E in the deep tropics. The surface‐albedo feedback shifts the location of maximum tropical P − E and increases P − E in the polar regions. The intermodel spread in the P − E changes associated with feedbacks arises mainly from cloud feedbacks, with the lapse‐rate and surface‐albedo feedbacks playing important roles in the polar regions. The P − E change associated with cloud feedback locking in the MEBM is similar to that of a climate model with inactive cloud feedbacks. This work highlights the unique role that climate feedbacks play in causing deviations from the “wet‐gets‐wetter, dry‐gets‐drier” paradigm.
Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1029/2023gl106648Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8833b5t4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Caltech Authors (Cal... arrow_drop_down Caltech Authors (California Institute of Technology)Article . 2024License: CC BYFull-Text: https://doi.org/10.1029/2023gl106648Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/8833b5t4Data sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2023gl106648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: E...NSF| Collaborative Research: Elucidating the Influence of Metal Binding on Electronic/Geometric Structure-Function Relationships in PhotorespirationAuthors: Sattik Ghosh; Stephanie Pulford; Arnold J. Bloom;AbstractPublic understanding about complex issues such as climate change relies heavily on online resources. Yet the role that online instruction should assume in post-secondary science education remains contentious despite its near ubiquity during the COVID-19 pandemic. The objective here was to compare the performance of 1790 undergraduates taking either an online or face-to-face version of an introductory course on climate change. Both versions were taught by a single instructor, thus, minimizing instructor bias. Women, seniors, English language learners, and humanities majors disproportionately chose to enroll in the online version because of its ease of scheduling and accessibility. After correcting for performance-gaps among different demographic groups, the COVID-19 pandemic had no significant effect on online student performance and students in the online version scored 2% lower (on a scale of 0–100) than those in the face-to-face version, a penalty that may be a reasonable tradeoff for the ease of scheduling and accessibility that these students desire.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/33s8d1zwData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00506-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2022License: CC BYFull-Text: https://escholarship.org/uc/item/33s8d1zwData sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2022Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-022-00506-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu