search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
335 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Chinese

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The dataset contains artificial phenological observations of 17 species from 2009 to 2018 and consists of a woody plant subset and an herbaceous plant subset. A total of 97 pieces of woody plant subset data records phenological information such as leaf bud breaking phase, leaf unfolding phase, first bloom phase, full flowering phase, fruit or seed ripening phase, leaf turning to autumn color phase and leaf falling phase. A total of 66 pieces of herbaceous plant subset data records phenological information such as germination or turning green phase, flowering phase, fruit or seed ripening phase, seed dispersal phase and autumn wilting phase. The dataset contains artificial phenological observations of 17 species from 2009 to 2018 and consists of a woody plant subset and an herbaceous plant subset. A total of 97 pieces of woody plant subset data records phenological information such as leaf bud breaking phase, leaf unfolding phase, first bloom phase, full flowering phase, fruit or seed ripening phase, leaf turning to autumn color phase and leaf falling phase. A total of 66 pieces of herbaceous plant subset data records phenological information such as germination or turning green phase, flowering phase, fruit or seed ripening phase, seed dispersal phase and autumn wilting phase.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Xia, Li Jie; Yingnian, Li; Fawei, Zhang; Leiming, Zhang; +1 Authors

    This data set covers the CO2 flux monitoring station of Haibei Station from 2002 to 2020 in early May, Early or late June to September and mid-October each year. 12 periods of biomass monitoring data of alpine Kobresia humilis meadow were collected as EXCEL files. The biomass monitoring data of Kobresia humilis were aboveground (green grass, dead grass, debris) and underground (0-10cm, 10-20cm, 20-40cm). The data is retained to two decimal places in g/m2. For lack of test data in the "empty", or due to causes such as the sample lost data measurement, data set corresponding cell expressed as a blank. This data set covers the CO2 flux monitoring station of Haibei Station from 2002 to 2020 in early May, Early or late June to September and mid-October each year. 12 periods of biomass monitoring data of alpine Kobresia humilis meadow were collected as EXCEL files. The biomass monitoring data of Kobresia humilis were aboveground (green grass, dead grass, debris) and underground (0-10cm, 10-20cm, 20-40cm). The data is retained to two decimal places in g/m2. For lack of test data in the "empty", or due to causes such as the sample lost data measurement, data set corresponding cell expressed as a blank.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mekiso Yohannes Sido;

    Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production. Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zemeng Fan; Tianxiang YUE; Saibo LI; Xuyang BAI; +2 Authors

    Based on the observation monthly climatic data collected from 2766 weather observation stations on global during the period from 1981 to 2010, and the climatic scenarios data of SSP1_2.6、SSP1_4.5 and SSP1_8.5 scenarios released by CMIP6, the mean annual biotemperature, average total annual precipitation and potential evapotranspiration ratio on spatial resolution of 0.1º× 0.1º were respectively obtained by operating a high accuracy and speed method of surfacing modeling (HASM) (Yue, 2010, Yue et al., 2016) during all the four periods from 2020 to 2050 per decade. The method for surface modelling of land cover scenarios (SMLCS) has been developed to simulate the scenarios of land cover in Eurasia (Fan et al., 2019, 2020, 2021). Finally, the scenario dataset of land cover under scenario SSP1_2.6、SSP1_4.5 and SSP1_8.5 were simulated by the SMLCS method from 2020 to 2050. 采用1981-2010年全球2766个气象观测站的观测月气候数据,以及CMIP6发布的SSP1_2.6、SSP1_4.5和SSP1_8.5情景的气候情景数据。通过运行高精度面建模方法(HASM)(Yue, 2010, Yue et al., 2016),分别获得2020-2050年间每10年的空间分辨率为0.1º×0.1º的平均生物温度数据、多年平均年降水和潜在蒸散比率数据。采用自主研发的土地覆被情景曲面建模(SMLCS)方法(Fan et al., 2019, 2020, 2021),实现了SSP1_2.6、SSP1_4.5和SSP1_8.5情景的2020-2050年间每10年的全球土地覆被变化情景模拟。

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Jiachen Zhang; Yuncheng Han; Xiaoyu Wang; Ziwei Li; +3 Authors

    Direct charge radioisotope battery having the advantages of long service lifetime, simple structure, high open circuit voltage and easily miniaturized, is a promising source for the great power of Micro-Electro-Mechanical System. Although the beta sources are the main choice for direct charge nuclear battery in the present studies,but no systematic analysis and comparison on beta sources is presented. In this work, the properties of six beta sources (including 3H(Ti3H2), 14C, 35S, 45Ca, 63Ni and 147Pm) were studied by software simulation and theoretical calculation. This study includes the differences of energy conversion efficiency and the theoretical output power for direct charge nuclear battery. The calculated results showed that the energy conversion efficiency was positively correlated with the average energy of emitted radioactive particles, and the theoretical output power was negatively correlated with half-life of beta source. 147Pm was the preferred choice considering long life, the energy conversion efficiency and the theoretical output power. Direct charge radioisotope battery having the advantages of long service lifetime, simple structure, high open circuit voltage and easily miniaturized, is a promising source for the great power of Micro-Electro-Mechanical System. Although the beta sources are the main choice for direct charge nuclear battery in the present studies,but no systematic analysis and comparison on beta sources is presented. In this work, the properties of six beta sources (including 3H(Ti3H2), 14C, 35S, 45Ca, 63Ni and 147Pm) were studied by software simulation and theoretical calculation. This study includes the differences of energy conversion efficiency and the theoretical output power for direct charge nuclear battery. The calculated results showed that the energy conversion efficiency was positively correlated with the average energy of emitted radioactive particles, and the theoretical output power was negatively correlated with half-life of beta source. 147Pm was the preferred choice considering long life, the energy conversion efficiency and the theoretical output power.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: ZHANG Jing; SHEN Yanjun;

    Spatio-temporal variations in extreme drought in China during 1961–2015 Spatio-temporal variations in extreme drought in China during 1961–2015

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Peng Zeng (11152623);

    The table of calculated Biomass for the test site. And the parameters exacted from GF-3 and ALOS-2 SAR data (such as backscatter and decomposition parameters).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huang Yujie; Cao Mingyue;

    The Beijing‒Tianjin‒Hebei (BTH) region is intensive in energy consumption and carbon emission. Under the constraint of the carbon peaking and carbon neutrality goals, it is significant to analyze the coordinated development policies that synergistically promote low-carbon economic and social transformation in the BTH region. A long-range energy alternatives planning system (LEAP)-BTH model is constructed considering the characteristics of the BTH region, to analyze the energy demand and carbon emission of the region from 2021 to 2060. Three scenarios are considered, namely baseline scenario, low-carbon scenario, and coordinated scenario, and eight sub-scenarios are taken into account. The results indicate that: (1) In the baseline scenario, the energy demand in the BTH region will continue to grow, and the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 41%, 40%, and 53% of that in 2020, respectively, facing great challenges for achieving carbon neutrality. (2) In the low-carbon scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 20%, 26%, and 46% of that in 2020, respectively, and the BTH region will still not be carbon neutral. (3) In the coordinated scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 13%, 15%, and 21% of that in 2020, respectively, thus achieving carbon neutrality. Several suggestions were further proposed. Beijing, Tianjin, and Hebei should adopt clearer and stricter policies for their key emission reduction sectors and measures. For example, Beijing should promote low-carbon transition in its transportation and construction sectors, while Tianjin and Hebei should promote renewable energy alternatives and low-carbon industrial upgrading. Top-level design should be optimized to fully tap the potentials for coordinated development of industry, energy, transportation, and other sectors, with the focus on promoting coordinated industrial upgrading and coordinated energy development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 中国工程科学arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    中国工程科学
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 中国工程科学arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      中国工程科学
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lin, Zhang; YUAN Weiying; SONG Chuangye; WU Dongxiu; +19 Authors

    The dataset includes background information, dynamic changes of environmental elements, as well as observation records of plant species richness and biomass dynamics of 84 long-term biological observation plots at 19 natural ecosystem stations of four ecosystems types: forests, grasslands, deserts, and marshes in CERN. The main data include: background information on the establishment of the observation plots, vegetation classification information, soil type and soil profile characteristics, human activities, observation plots management system, description of the surrounding environment, vegetation characterization of the plant community, number of species, biomass, soil pH, soil organic carbon, soil total nitrogen, soil total phosphorus, climatic conditions, animal activities and disaster records. The dataset includes background information, dynamic changes of environmental elements, as well as observation records of plant species richness and biomass dynamics of 84 long-term biological observation plots at 19 natural ecosystem stations of four ecosystems types: forests, grasslands, deserts, and marshes in CERN. The main data include: background information on the establishment of the observation plots, vegetation classification information, soil type and soil profile characteristics, human activities, observation plots management system, description of the surrounding environment, vegetation characterization of the plant community, number of species, biomass, soil pH, soil organic carbon, soil total nitrogen, soil total phosphorus, climatic conditions, animal activities and disaster records.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2024
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2024
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
335 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The dataset contains artificial phenological observations of 17 species from 2009 to 2018 and consists of a woody plant subset and an herbaceous plant subset. A total of 97 pieces of woody plant subset data records phenological information such as leaf bud breaking phase, leaf unfolding phase, first bloom phase, full flowering phase, fruit or seed ripening phase, leaf turning to autumn color phase and leaf falling phase. A total of 66 pieces of herbaceous plant subset data records phenological information such as germination or turning green phase, flowering phase, fruit or seed ripening phase, seed dispersal phase and autumn wilting phase. The dataset contains artificial phenological observations of 17 species from 2009 to 2018 and consists of a woody plant subset and an herbaceous plant subset. A total of 97 pieces of woody plant subset data records phenological information such as leaf bud breaking phase, leaf unfolding phase, first bloom phase, full flowering phase, fruit or seed ripening phase, leaf turning to autumn color phase and leaf falling phase. A total of 66 pieces of herbaceous plant subset data records phenological information such as germination or turning green phase, flowering phase, fruit or seed ripening phase, seed dispersal phase and autumn wilting phase.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2019
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2019
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Xia, Li Jie; Yingnian, Li; Fawei, Zhang; Leiming, Zhang; +1 Authors

    This data set covers the CO2 flux monitoring station of Haibei Station from 2002 to 2020 in early May, Early or late June to September and mid-October each year. 12 periods of biomass monitoring data of alpine Kobresia humilis meadow were collected as EXCEL files. The biomass monitoring data of Kobresia humilis were aboveground (green grass, dead grass, debris) and underground (0-10cm, 10-20cm, 20-40cm). The data is retained to two decimal places in g/m2. For lack of test data in the "empty", or due to causes such as the sample lost data measurement, data set corresponding cell expressed as a blank. This data set covers the CO2 flux monitoring station of Haibei Station from 2002 to 2020 in early May, Early or late June to September and mid-October each year. 12 periods of biomass monitoring data of alpine Kobresia humilis meadow were collected as EXCEL files. The biomass monitoring data of Kobresia humilis were aboveground (green grass, dead grass, debris) and underground (0-10cm, 10-20cm, 20-40cm). The data is retained to two decimal places in g/m2. For lack of test data in the "empty", or due to causes such as the sample lost data measurement, data set corresponding cell expressed as a blank.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Mekiso Yohannes Sido;

    Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production. Cyanobacterial biomass is important for biofuel and biofertilizer, however, biomass production requires expensive chemical growth nutrients. To address this issue, we explored the useof inexpensive growth nutrient media from an integrated manure-seawater system for cyanobacterial biomass production. Salt-tolerant cyanobacterial strain HSaC and salt-sensitive cyanobacterial strain LC were tested to evaluate the potential of integrated manure-seawater media for sustainable cyanobacterial biomass production. As a prerequisite for seawater experiments, strain HSaC was grown at different NaCl concentrations (0 mM, 60 mM, 120 mM, 180 mM, 240 mM and 300 mM) to identify the optimum salt concentration. The highest biomass yield and photosynthetic pigment contents were obtained at 120 mM NaCl concentration. The highest exo-polysaccharide (EPS) content was obtained at 180 mM NaCl concentration. The treatments for the manure-seawater media were cow manure, pig manure, chicken manure and BG11, each with distilled water, diluted seawater and non-diluted seawater. The highest biomass and photosynthetic pigment yield for cyanobacterial strains LC and HSaC were obtained from 0.5 dS/m and 10 dS/m diluted seawater integrated with cow manure, respectively, but pig and chicken manure performed poorly. Overall, the biomass production and photosynthetic pigment results from cow manure-seawater were relatively better than those from the reference media (BG11). Based on the current findings, it is concluded that the growth nutrients from integrated cow manure-seawater can wholly substitute for the BG11 without affecting cyanobacterial growth, thereby reducing the usage of expensive chemical growth media. Thus,The results of study help to enhance the biomass production of both salt-sensitive and salt-tolerant cyanobacteria for sustainable biofuel and biofertilizer production.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zemeng Fan; Tianxiang YUE; Saibo LI; Xuyang BAI; +2 Authors

    Based on the observation monthly climatic data collected from 2766 weather observation stations on global during the period from 1981 to 2010, and the climatic scenarios data of SSP1_2.6、SSP1_4.5 and SSP1_8.5 scenarios released by CMIP6, the mean annual biotemperature, average total annual precipitation and potential evapotranspiration ratio on spatial resolution of 0.1º× 0.1º were respectively obtained by operating a high accuracy and speed method of surfacing modeling (HASM) (Yue, 2010, Yue et al., 2016) during all the four periods from 2020 to 2050 per decade. The method for surface modelling of land cover scenarios (SMLCS) has been developed to simulate the scenarios of land cover in Eurasia (Fan et al., 2019, 2020, 2021). Finally, the scenario dataset of land cover under scenario SSP1_2.6、SSP1_4.5 and SSP1_8.5 were simulated by the SMLCS method from 2020 to 2050. 采用1981-2010年全球2766个气象观测站的观测月气候数据,以及CMIP6发布的SSP1_2.6、SSP1_4.5和SSP1_8.5情景的气候情景数据。通过运行高精度面建模方法(HASM)(Yue, 2010, Yue et al., 2016),分别获得2020-2050年间每10年的空间分辨率为0.1º×0.1º的平均生物温度数据、多年平均年降水和潜在蒸散比率数据。采用自主研发的土地覆被情景曲面建模(SMLCS)方法(Fan et al., 2019, 2020, 2021),实现了SSP1_2.6、SSP1_4.5和SSP1_8.5情景的2020-2050年间每10年的全球土地覆被变化情景模拟。

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; +1 Authors

    Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Jiachen Zhang; Yuncheng Han; Xiaoyu Wang; Ziwei Li; +3 Authors

    Direct charge radioisotope battery having the advantages of long service lifetime, simple structure, high open circuit voltage and easily miniaturized, is a promising source for the great power of Micro-Electro-Mechanical System. Although the beta sources are the main choice for direct charge nuclear battery in the present studies,but no systematic analysis and comparison on beta sources is presented. In this work, the properties of six beta sources (including 3H(Ti3H2), 14C, 35S, 45Ca, 63Ni and 147Pm) were studied by software simulation and theoretical calculation. This study includes the differences of energy conversion efficiency and the theoretical output power for direct charge nuclear battery. The calculated results showed that the energy conversion efficiency was positively correlated with the average energy of emitted radioactive particles, and the theoretical output power was negatively correlated with half-life of beta source. 147Pm was the preferred choice considering long life, the energy conversion efficiency and the theoretical output power. Direct charge radioisotope battery having the advantages of long service lifetime, simple structure, high open circuit voltage and easily miniaturized, is a promising source for the great power of Micro-Electro-Mechanical System. Although the beta sources are the main choice for direct charge nuclear battery in the present studies,but no systematic analysis and comparison on beta sources is presented. In this work, the properties of six beta sources (including 3H(Ti3H2), 14C, 35S, 45Ca, 63Ni and 147Pm) were studied by software simulation and theoretical calculation. This study includes the differences of energy conversion efficiency and the theoretical output power for direct charge nuclear battery. The calculated results showed that the energy conversion efficiency was positively correlated with the average energy of emitted radioactive particles, and the theoretical output power was negatively correlated with half-life of beta source. 147Pm was the preferred choice considering long life, the energy conversion efficiency and the theoretical output power.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: ZHANG Jing; SHEN Yanjun;

    Spatio-temporal variations in extreme drought in China during 1961–2015 Spatio-temporal variations in extreme drought in China during 1961–2015

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Peng Zeng (11152623);

    The table of calculated Biomass for the test site. And the parameters exacted from GF-3 and ALOS-2 SAR data (such as backscatter and decomposition parameters).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huang Yujie; Cao Mingyue;

    The Beijing‒Tianjin‒Hebei (BTH) region is intensive in energy consumption and carbon emission. Under the constraint of the carbon peaking and carbon neutrality goals, it is significant to analyze the coordinated development policies that synergistically promote low-carbon economic and social transformation in the BTH region. A long-range energy alternatives planning system (LEAP)-BTH model is constructed considering the characteristics of the BTH region, to analyze the energy demand and carbon emission of the region from 2021 to 2060. Three scenarios are considered, namely baseline scenario, low-carbon scenario, and coordinated scenario, and eight sub-scenarios are taken into account. The results indicate that: (1) In the baseline scenario, the energy demand in the BTH region will continue to grow, and the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 41%, 40%, and 53% of that in 2020, respectively, facing great challenges for achieving carbon neutrality. (2) In the low-carbon scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 20%, 26%, and 46% of that in 2020, respectively, and the BTH region will still not be carbon neutral. (3) In the coordinated scenario, the carbon emissions of Beijing, Tianjin, and Hebei in 2060 will decrease to 13%, 15%, and 21% of that in 2020, respectively, thus achieving carbon neutrality. Several suggestions were further proposed. Beijing, Tianjin, and Hebei should adopt clearer and stricter policies for their key emission reduction sectors and measures. For example, Beijing should promote low-carbon transition in its transportation and construction sectors, while Tianjin and Hebei should promote renewable energy alternatives and low-carbon industrial upgrading. Top-level design should be optimized to fully tap the potentials for coordinated development of industry, energy, transportation, and other sectors, with the focus on promoting coordinated industrial upgrading and coordinated energy development.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 中国工程科学arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    中国工程科学
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 中国工程科学arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      中国工程科学
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Lin, Zhang; YUAN Weiying; SONG Chuangye; WU Dongxiu; +19 Authors

    The dataset includes background information, dynamic changes of environmental elements, as well as observation records of plant species richness and biomass dynamics of 84 long-term biological observation plots at 19 natural ecosystem stations of four ecosystems types: forests, grasslands, deserts, and marshes in CERN. The main data include: background information on the establishment of the observation plots, vegetation classification information, soil type and soil profile characteristics, human activities, observation plots management system, description of the surrounding environment, vegetation characterization of the plant community, number of species, biomass, soil pH, soil organic carbon, soil total nitrogen, soil total phosphorus, climatic conditions, animal activities and disaster records. The dataset includes background information, dynamic changes of environmental elements, as well as observation records of plant species richness and biomass dynamics of 84 long-term biological observation plots at 19 natural ecosystem stations of four ecosystems types: forests, grasslands, deserts, and marshes in CERN. The main data include: background information on the establishment of the observation plots, vegetation classification information, soil type and soil profile characteristics, human activities, observation plots management system, description of the surrounding environment, vegetation characterization of the plant community, number of species, biomass, soil pH, soil organic carbon, soil total nitrogen, soil total phosphorus, climatic conditions, animal activities and disaster records.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.57760/sc...
    Dataset . 2024
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.57760/sc...
      Dataset . 2024
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.