- home
- Search
- Energy Research
- Closed Access
- 6. Clean water
- 3. Good health
- 4. Education
- Energy Conversion and Management
- Energy Research
- Closed Access
- 6. Clean water
- 3. Good health
- 4. Education
- Energy Conversion and Management
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sayed Siavash Madaeni; S. Zereshki;Abstract Removing water from various feeds is usually carried out using evaporation process especially in food industry. Due to the high latent heat of water, this unit operation results in consumption of unacceptable amount of energy. Finding low energy consuming processes which could be replaced with this process is still a challenge. The processes with no phase inversion may be considered for concentration purposes with reasonable energy consumption in comparison with the other various separation procedures. Reverse osmosis and most of the other membrane technologies are separation techniques without any change in the phase and therefore consume low amount of energy. Concentrating the sugar thin juice in the classical sugar manufacturing procedure is carried out using conventional evaporation. Reverse osmosis membranes may be used as a pre-concentration step to partially separate water from the sugar thin juice in combination with this part of the plant. Final concentration and thick juice preparation for crystallization may be carried out in the evaporation unit. In this study, membranes were employed for sugar thin juice concentration using a two-stage reverse osmosis process in two different arrangements. The energy consumption was calculated and compared for conventional evaporation versus reverse osmosis combined with evaporation. The results indicate that the employment of revers osmosis membranes for concentrating the sugar thin juice leads to sensibly lower energy requirements. Furthermore, there is no thermal loss of sugar in the membrane process.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Abimbola M. Enitan; Sheena Kumari; Ahmed Tawfik; Ahmed Elreedy; Faizal Bux;Abstract Simultaneous production of 3-biofuels (hydrogen, ethanol and methane) as by-products of the biodegradation of petrochemical wastewater containing MEG via anaerobic packed bed baffled reactor (AnPBBR), was extensively investigated. A four-chambered reactor supported by polyurethane sheets, was operated at a constant hydraulic retention time (HRT) of 36 h and different organic loading rates (OLRs) of 0.67, 1, 2 and 4 gCOD/L/d. The maximum specific H 2 and CH 4 production rates of 438.07 ± 43.02 and 237.80 ± 21.67 ml/L/d were respectively achieved at OLR of 4 gCOD/L/d. The residual bio-ethanol significantly increased from 57.15 ± 2.31 to 240.19 ± 34.69 mg/L at increasing the OLR from 0.67 to 4 gCOD/L/d, respectively. The maximum MEG biodegradability of 98% was attained at the lowest OLR. Compartment-wise profiles revealed that the maximum H 2 and ethanol production were achieved at HRT of 9 h (1st compartment), while the CH 4 production was peaked at HRTs of 27 and 36 h (last two compartments). Kinetic studies using Stover–Kincannon and completely stirred tank reactor (CSTR) in series models were successfully applied to the AnPBBR overall and compartment-to-compartment performance, respectively. The economic evaluation strongly revealed the potentials of using AnPBBR for simultaneous treatment and bio-energy production from petrochemical wastewater as compared to the classical anaerobic baffled reactor (ABR). Microbial analysis using Illumina MiSeq sequencing showed a diversity of bacterial community in AnPBBR. Proteobacteria (36.62%), Firmicutes (20.85%) and Bacteroidetes (3.44%) were the most dominant phyla.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BrazilPublisher:Elsevier BV Authors: Nogueira Vilanova, Mateus Ricardo; Perrella Balestieri, Jose Antonio;handle: 11449/113559
Abstract The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ofélia de Queiroz Fernandes Araújo; Leilane M.S. Correia; José Luiz de Medeiros; Myrlla G.R.S. Santos;Abstract Dehydration is a critical operation in natural gas conditioning as it reduces the potential for corrosion, hydrate formation and freezing in process equipment and transportation pipelines. Water dew point adjustment is particularly challenging in the remote ultra-deepwater natural gas reserves of the Brazilian Pre-Salt fields due to their very high carbon dioxide contents – from 30% up to 90% in raw natural gas – which is a consequence from the carbonaceous rock of the reservoir structure and long term elevation of carbon dioxide content due to its injection for early enhanced oil recovery. Under this scenario, the study evaluates the impact of the carbon dioxide content of the natural gas on the performance of water dew point via water adsorption on 4 A Zeolite molecular sieve beds. Process simulation with adsorption simulator Adsim (Aspen Technology, Inc), at varying operation pressures and carbon dioxide contents in raw natural gas, indicated that, although adsorption meets water removal specification in a condensation free operation, the high fugacity of carbon dioxide penalizes the dehydration performance due to probably two facts: (i) higher carbon dioxide fugacity in the humid natural gas imply higher saturation water content in the gas phase, which increases the service of dehydration units; and (ii) higher carbon dioxide fugacity in the humid natural gas establishes a discreet adsorption competition with water resulting in 6.5% increase of adsorbent bed volume for operating pressures of 35 bar or higher.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hongsheng Zhang; Hongbin Zhao; Zhenlin Li;Abstract A new air-cooled gas-steam combined cycle cogeneration system with absorption heat pump for recovering waste heat from exhausted steam of the steam turbine to achieve double effects of waste heat recovery and water saving is proposed based on a conventional water-cooled gas-steam combined cycle cogeneration system in the paper. The property criteria variation is analyzed before and after modification. In addition, the exergy analyses of primary equipments are carried out based upon the exergy analysis theory. The results demonstrate that the net generating power is approximately increased by 11,082 kW, equivalent coal consumption is reduced by 2.71 g/kWh, the net overall thermal efficiency is improved by 0.91% with 334,245 kW heating load at 100% load of the gas turbine in the modified system. Besides, the overall exergy loss is decreased by 6448 kW and exergy efficiency is improved by 0.98%. The overall property of the whole system is improved. The results show that the property reduction caused by air-cooling modification can be made up by the property improvement due to waste heat recovery. Moreover, the cooling circulating water can be saved by 1196.34 kg/s. The presented measure can not only improve performance of the system but also simultaneously achieve energy and water saving on the premise of satisfying user needs, which has a wide application potential in the water-shortage regions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Bassam A; K Abu-Hijleh; Hamzeh M. Rababa’h;The performance of a solar still with different size sponge cubes placed in the basin was studied experimentally. The increase in distillate production of the still ranged from 18% to 273% compared to an identical still without sponge cubes under the same conditions. The effects of sponge cube size, percent volume of sponge, water depth, water salinity and the use of black coal and black steel cubes were also investigated. The study showed that the daily production of such a still can be greatly enhanced using sponge cubes.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00162-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00162-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yufeng Duan; Liu Meng; Jian Li;Abstract Organic solvent upgrading Indonesian lignite was performed in a 1 L autoclave under moderate temperature. The chemical structure and functional groups transformation of lignite upgraded by two organic solvents (ethanol and n-hexane) were analyzed to explore the upgrading mechanism of solvent thermal treatment by using Fourier transform infrared (FTIR) and 13 C nuclear magnetic resonance (NMR). In addition, the characteristics of pyrolysis of treated samples were investigated using thermo gravimetric (TG) to clarify the variance of pyrolysis reactivity. Results showed that the carbon content and calorific value of upgraded lignite were significantly improved, and H/C and O/C ratios of treated samples were significantly reduced with the temperature increasing. The relative percentage of carbonyl and carboxyl carbon, oxygenated aliphatic carbon and methoxyl carbon of lignite upgraded at 300 °C decreased by 20–30%. However, the carbon-substituted and protonated aromatic carbon at 120–135 ppm and protonated aromatic carbon at 90–120 ppm were significantly increased after lignite was upgraded by the two solvents at above 200 °C. These transformations indicated that oxygen-containing functional group was substituted by hydrogen or carbon-substituent as temperature increased, and were intensified at above 200 °C. In addition, oxygen-loss in the treated samples was attributed to the loss of carbonyl group at 175 ppm, dihydric phenol at 147 ppm, and methoxyl group at 55 ppm. The activation energy of upgraded lignite at 300 °C were higher than those of raw lignite and upgraded lignite at 100 and 200 °C, indicating the low reactivity of pyrolysis of the treated lignite with the temperature increasing.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: N. Asgari; R. Khoshbakhti Saray; S. Mirmasoumi;Abstract Combined cooling, heating, and power systems have been studied extensively because of their great potentials. Accordingly, in the present study, an innovative trigeneration system including a gas turbine cycle, a gasification unit, a heating unit, alongside a single effect absorption refrigeration cycle is proposed. The system operates on natural gas and municipal solid waste (MSW) for cooling, heating, and power generation. The designed system was simulated using Engineering Equation Solver (EES) software through two scenarios; constant power output and constant biomass feed rate, considering seasonal and annual periods. In the first scenario, considering the constant power capacity, the basic design state was considered with the biomass mixing ratio of 50%, and the results of the seasonal study showed that the system capacity is 30 MW , 41.9 MW , and 39.24 MW in terms of electricity, heating, and cooling, respectively. The exergy analysis revealed that the combustion chamber, the evaporator of Heat Recovery Steam Generator (HRSG), and the gasifier in both hot and cold seasons have the highest exergy destruction rate, while the economizers and the evaporators of both HRSGs have the lowest exergy efficiency. The constant mass flow rate of MSW was assumed to be 1.5 kg / s and accordingly, the feed rate of natural gas was also 1.5 kg / s for the mixing ratio of 50% in basic design state of the second scenario, and the results indicated that the annual average capacity of the system for electricity, heating, and cooling generation is 27.43 MW , 40 MW , and 34.15 MW , respectively. Furthermore, the system was capable of providing the domestic hot water supply of end-user with an average capacity of 7.5 MW during a year. The annual Energy Utilization Factor (EUF) and the annual exergy efficiency of the overall system were shown to be 71.25% and 30.79%, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV R. Yoshida; I. Sekiguchi; H. Taniguchi; I. Tamura; H. Sasaki; M. Yokogawa;An analytical investigation of a high-temperature heat pump system was developed to estimate the thermal cycle and to assess the thermal fluids for their high-temperature delivery (up to 180°C) capacities without decomposition or the use of lubricant mechanisms. Then, a screw-type compressor was applied in the above conditions. Furthermore, a screw expander was also used as a replacement for the throttle valve [Taniguchi et al. J. Engng Gas Turbine and Power (ASME) 110, 628–635 (1988). In order to assess the performance of the heat pump system, leakage and friction effects had to be determined and simulated when using the screw machines. Numerical results of system tests are presented from cases where steam-water (for higher temperatures) and ammonia (for lower temperatures) were used as thermal fluids instead of normally used fluids such as halogenated chlorofluorocarbon, which has been implicated in the depletion of stratospheric ozone.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1997 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(96)00130-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1997 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(96)00130-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Hui Zhang; Haijun Xiang; Yiping Wang; Li Zhu; Xinyue Han;Abstract Direct de-ionized (DI) water immersion cooling has been verified to be an effective method of managing the operating temperature of silicon solar cells under concentration. However, the stable electrical performance is difficult to be achieved. Possible factors from bare cell self, materials for tabbing cells were investigated in this study for understanding the degradation mechanism. Long term immersion results showed that no significant degradation on bare cells operated in DI water at 65 °C. When cells were tabbed using lead-based solder and flux, the short circuit current ( I sc ) of cells decreased with exposure time, notably under sunlight, but it was not observed for cell open circuit voltage ( V oc ). The epoxy tabbed cells test also demonstrated that the tabbed cells without lead-based solder and flux involved were also found drop in I sc , but with slower rate. The presence of lead and tin black oxides on the lead based-soldered tabbed cells and red deposition on the epoxy tabbed cells confirmed the occurrence of galvanic corrosion. However, particular cleaning recovers the I – V towards its initial values for the former tabbed cells, and partial recovery for the latter tabbed cells, which indicates that the cells are not damaged after long-time DI water immersion.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sayed Siavash Madaeni; S. Zereshki;Abstract Removing water from various feeds is usually carried out using evaporation process especially in food industry. Due to the high latent heat of water, this unit operation results in consumption of unacceptable amount of energy. Finding low energy consuming processes which could be replaced with this process is still a challenge. The processes with no phase inversion may be considered for concentration purposes with reasonable energy consumption in comparison with the other various separation procedures. Reverse osmosis and most of the other membrane technologies are separation techniques without any change in the phase and therefore consume low amount of energy. Concentrating the sugar thin juice in the classical sugar manufacturing procedure is carried out using conventional evaporation. Reverse osmosis membranes may be used as a pre-concentration step to partially separate water from the sugar thin juice in combination with this part of the plant. Final concentration and thick juice preparation for crystallization may be carried out in the evaporation unit. In this study, membranes were employed for sugar thin juice concentration using a two-stage reverse osmosis process in two different arrangements. The energy consumption was calculated and compared for conventional evaporation versus reverse osmosis combined with evaporation. The results indicate that the employment of revers osmosis membranes for concentrating the sugar thin juice leads to sensibly lower energy requirements. Furthermore, there is no thermal loss of sugar in the membrane process.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Abimbola M. Enitan; Sheena Kumari; Ahmed Tawfik; Ahmed Elreedy; Faizal Bux;Abstract Simultaneous production of 3-biofuels (hydrogen, ethanol and methane) as by-products of the biodegradation of petrochemical wastewater containing MEG via anaerobic packed bed baffled reactor (AnPBBR), was extensively investigated. A four-chambered reactor supported by polyurethane sheets, was operated at a constant hydraulic retention time (HRT) of 36 h and different organic loading rates (OLRs) of 0.67, 1, 2 and 4 gCOD/L/d. The maximum specific H 2 and CH 4 production rates of 438.07 ± 43.02 and 237.80 ± 21.67 ml/L/d were respectively achieved at OLR of 4 gCOD/L/d. The residual bio-ethanol significantly increased from 57.15 ± 2.31 to 240.19 ± 34.69 mg/L at increasing the OLR from 0.67 to 4 gCOD/L/d, respectively. The maximum MEG biodegradability of 98% was attained at the lowest OLR. Compartment-wise profiles revealed that the maximum H 2 and ethanol production were achieved at HRT of 9 h (1st compartment), while the CH 4 production was peaked at HRTs of 27 and 36 h (last two compartments). Kinetic studies using Stover–Kincannon and completely stirred tank reactor (CSTR) in series models were successfully applied to the AnPBBR overall and compartment-to-compartment performance, respectively. The economic evaluation strongly revealed the potentials of using AnPBBR for simultaneous treatment and bio-energy production from petrochemical wastewater as compared to the classical anaerobic baffled reactor (ABR). Microbial analysis using Illumina MiSeq sequencing showed a diversity of bacterial community in AnPBBR. Proteobacteria (36.62%), Firmicutes (20.85%) and Bacteroidetes (3.44%) were the most dominant phyla.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2016.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 BrazilPublisher:Elsevier BV Authors: Nogueira Vilanova, Mateus Ricardo; Perrella Balestieri, Jose Antonio;handle: 11449/113559
Abstract The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ofélia de Queiroz Fernandes Araújo; Leilane M.S. Correia; José Luiz de Medeiros; Myrlla G.R.S. Santos;Abstract Dehydration is a critical operation in natural gas conditioning as it reduces the potential for corrosion, hydrate formation and freezing in process equipment and transportation pipelines. Water dew point adjustment is particularly challenging in the remote ultra-deepwater natural gas reserves of the Brazilian Pre-Salt fields due to their very high carbon dioxide contents – from 30% up to 90% in raw natural gas – which is a consequence from the carbonaceous rock of the reservoir structure and long term elevation of carbon dioxide content due to its injection for early enhanced oil recovery. Under this scenario, the study evaluates the impact of the carbon dioxide content of the natural gas on the performance of water dew point via water adsorption on 4 A Zeolite molecular sieve beds. Process simulation with adsorption simulator Adsim (Aspen Technology, Inc), at varying operation pressures and carbon dioxide contents in raw natural gas, indicated that, although adsorption meets water removal specification in a condensation free operation, the high fugacity of carbon dioxide penalizes the dehydration performance due to probably two facts: (i) higher carbon dioxide fugacity in the humid natural gas imply higher saturation water content in the gas phase, which increases the service of dehydration units; and (ii) higher carbon dioxide fugacity in the humid natural gas establishes a discreet adsorption competition with water resulting in 6.5% increase of adsorbent bed volume for operating pressures of 35 bar or higher.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2017.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Hongsheng Zhang; Hongbin Zhao; Zhenlin Li;Abstract A new air-cooled gas-steam combined cycle cogeneration system with absorption heat pump for recovering waste heat from exhausted steam of the steam turbine to achieve double effects of waste heat recovery and water saving is proposed based on a conventional water-cooled gas-steam combined cycle cogeneration system in the paper. The property criteria variation is analyzed before and after modification. In addition, the exergy analyses of primary equipments are carried out based upon the exergy analysis theory. The results demonstrate that the net generating power is approximately increased by 11,082 kW, equivalent coal consumption is reduced by 2.71 g/kWh, the net overall thermal efficiency is improved by 0.91% with 334,245 kW heating load at 100% load of the gas turbine in the modified system. Besides, the overall exergy loss is decreased by 6448 kW and exergy efficiency is improved by 0.98%. The overall property of the whole system is improved. The results show that the property reduction caused by air-cooling modification can be made up by the property improvement due to waste heat recovery. Moreover, the cooling circulating water can be saved by 1196.34 kg/s. The presented measure can not only improve performance of the system but also simultaneously achieve energy and water saving on the premise of satisfying user needs, which has a wide application potential in the water-shortage regions.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.11.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Bassam A; K Abu-Hijleh; Hamzeh M. Rababa’h;The performance of a solar still with different size sponge cubes placed in the basin was studied experimentally. The increase in distillate production of the still ranged from 18% to 273% compared to an identical still without sponge cubes under the same conditions. The effects of sponge cube size, percent volume of sponge, water depth, water salinity and the use of black coal and black steel cubes were also investigated. The study showed that the daily production of such a still can be greatly enhanced using sponge cubes.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00162-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 228 citations 228 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2003 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(02)00162-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Yufeng Duan; Liu Meng; Jian Li;Abstract Organic solvent upgrading Indonesian lignite was performed in a 1 L autoclave under moderate temperature. The chemical structure and functional groups transformation of lignite upgraded by two organic solvents (ethanol and n-hexane) were analyzed to explore the upgrading mechanism of solvent thermal treatment by using Fourier transform infrared (FTIR) and 13 C nuclear magnetic resonance (NMR). In addition, the characteristics of pyrolysis of treated samples were investigated using thermo gravimetric (TG) to clarify the variance of pyrolysis reactivity. Results showed that the carbon content and calorific value of upgraded lignite were significantly improved, and H/C and O/C ratios of treated samples were significantly reduced with the temperature increasing. The relative percentage of carbonyl and carboxyl carbon, oxygenated aliphatic carbon and methoxyl carbon of lignite upgraded at 300 °C decreased by 20–30%. However, the carbon-substituted and protonated aromatic carbon at 120–135 ppm and protonated aromatic carbon at 90–120 ppm were significantly increased after lignite was upgraded by the two solvents at above 200 °C. These transformations indicated that oxygen-containing functional group was substituted by hydrogen or carbon-substituent as temperature increased, and were intensified at above 200 °C. In addition, oxygen-loss in the treated samples was attributed to the loss of carbonyl group at 175 ppm, dihydric phenol at 147 ppm, and methoxyl group at 55 ppm. The activation energy of upgraded lignite at 300 °C were higher than those of raw lignite and upgraded lignite at 100 and 200 °C, indicating the low reactivity of pyrolysis of the treated lignite with the temperature increasing.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: N. Asgari; R. Khoshbakhti Saray; S. Mirmasoumi;Abstract Combined cooling, heating, and power systems have been studied extensively because of their great potentials. Accordingly, in the present study, an innovative trigeneration system including a gas turbine cycle, a gasification unit, a heating unit, alongside a single effect absorption refrigeration cycle is proposed. The system operates on natural gas and municipal solid waste (MSW) for cooling, heating, and power generation. The designed system was simulated using Engineering Equation Solver (EES) software through two scenarios; constant power output and constant biomass feed rate, considering seasonal and annual periods. In the first scenario, considering the constant power capacity, the basic design state was considered with the biomass mixing ratio of 50%, and the results of the seasonal study showed that the system capacity is 30 MW , 41.9 MW , and 39.24 MW in terms of electricity, heating, and cooling, respectively. The exergy analysis revealed that the combustion chamber, the evaporator of Heat Recovery Steam Generator (HRSG), and the gasifier in both hot and cold seasons have the highest exergy destruction rate, while the economizers and the evaporators of both HRSGs have the lowest exergy efficiency. The constant mass flow rate of MSW was assumed to be 1.5 kg / s and accordingly, the feed rate of natural gas was also 1.5 kg / s for the mixing ratio of 50% in basic design state of the second scenario, and the results indicated that the annual average capacity of the system for electricity, heating, and cooling generation is 27.43 MW , 40 MW , and 34.15 MW , respectively. Furthermore, the system was capable of providing the domestic hot water supply of end-user with an average capacity of 7.5 MW during a year. The annual Energy Utilization Factor (EUF) and the annual exergy efficiency of the overall system were shown to be 71.25% and 30.79%, respectively.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.113096&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV R. Yoshida; I. Sekiguchi; H. Taniguchi; I. Tamura; H. Sasaki; M. Yokogawa;An analytical investigation of a high-temperature heat pump system was developed to estimate the thermal cycle and to assess the thermal fluids for their high-temperature delivery (up to 180°C) capacities without decomposition or the use of lubricant mechanisms. Then, a screw-type compressor was applied in the above conditions. Furthermore, a screw expander was also used as a replacement for the throttle valve [Taniguchi et al. J. Engng Gas Turbine and Power (ASME) 110, 628–635 (1988). In order to assess the performance of the heat pump system, leakage and friction effects had to be determined and simulated when using the screw machines. Numerical results of system tests are presented from cases where steam-water (for higher temperatures) and ammonia (for lower temperatures) were used as thermal fluids instead of normally used fluids such as halogenated chlorofluorocarbon, which has been implicated in the depletion of stratospheric ozone.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1997 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(96)00130-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 1997 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0196-8904(96)00130-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Hui Zhang; Haijun Xiang; Yiping Wang; Li Zhu; Xinyue Han;Abstract Direct de-ionized (DI) water immersion cooling has been verified to be an effective method of managing the operating temperature of silicon solar cells under concentration. However, the stable electrical performance is difficult to be achieved. Possible factors from bare cell self, materials for tabbing cells were investigated in this study for understanding the degradation mechanism. Long term immersion results showed that no significant degradation on bare cells operated in DI water at 65 °C. When cells were tabbed using lead-based solder and flux, the short circuit current ( I sc ) of cells decreased with exposure time, notably under sunlight, but it was not observed for cell open circuit voltage ( V oc ). The epoxy tabbed cells test also demonstrated that the tabbed cells without lead-based solder and flux involved were also found drop in I sc , but with slower rate. The presence of lead and tin black oxides on the lead based-soldered tabbed cells and red deposition on the epoxy tabbed cells confirmed the occurrence of galvanic corrosion. However, particular cleaning recovers the I – V towards its initial values for the former tabbed cells, and partial recovery for the latter tabbed cells, which indicates that the cells are not damaged after long-time DI water immersion.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2011.08.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu