- home
- Search
- Energy Research
- Open Access
- Restricted
- Embargo
- 7. Clean energy
- 12. Responsible consumption
- 8. Economic growth
- English
- Energy Research
- Open Access
- Restricted
- Embargo
- 7. Clean energy
- 12. Responsible consumption
- 8. Economic growth
- English
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 11 Nov 2022Publisher:Dryad Authors: Eslamdoust, Jamshid;Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:4TU.ResearchData Kavun, Vitalii; van der Linden, Bart; Canossa, Stefano; Goryachev, Andrey; Bos , Emma E.; Santaclara, Jara Garcia; Smolentsev, Grigory; Repo, Eveliina; van der Veen, Monique A.;Dataset for the manuscript "Promoting photocatalytic activity of NH2-MIL-125(Ti) for H2 evolution reaction through creation of TiIII and CoI based proton reduction sites".Dataset includes raw N2 sorption data (.aif format), PXRD data of (Co@)NH2-MIL-125(Ti), Co K-edge XANES spectrum of Co foil and transitional XAS (70-1140 usec) and EXAFS data for Co@NH2-MIL-125(Ti), and raw TEM images of the photocatalysts. These data was used for analysis and plotting the figures for the manuscript.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/e3fdc43f-4d54-4f15-9c1f-f68c6b23fceb.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/e3fdc43f-4d54-4f15-9c1f-f68c6b23fceb.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 28 May 2020Publisher:Dryad Authors: Hussain, Mir Zaman; Robertson, G.Philip; Basso, Bruno; Hamilton, Stephen K.;Leaching dataset of dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3+) and ammonium (NH4+) were collected from 6 cropping treatments (corn, switchgrass, miscanthus, native grass mix, restored prairie and poplar) established in the Bioenergy Cropping System Experiment (BCSE) which is a part of Great Lakes Bioenergy Research Center (www.glbrc.org) and Long Termn Ecological Research (LTER) program (www.lter.kbs.msu.edu). The site is located at the W.K. Kellogg Biological Station (42.3956° N, 85.3749° W and 288 m above sea level), 25 km from Kalamazoo in southwestern Michigan, USA. Prenart soil water samplers made of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) were installed in blocks 1 and 2 of the BCSE (Fig. S1), and Eijkelkamp soil water samplers made of ceramic (http://www.eijkelkamp.com) were installed in blocks 3 and 4 (there were no soil water samplers in block 5). All samplers were installed at 1.2 m depth at a 45° angle from the soil surface, approximately 20 cm into the unconsolidated sand of the 2Bt2 and 2E/Bt horizons. Beginning in 2009, soil water was sampled at weekly to biweekly intervals during non-frozen periods (April to November) by applying 50 kPa of vacuum for 24 hours, during which water was collected in glass bottles. During the 2009 and 2010 sampling periods we obtained fewer soil water samples from blocks 1 and 2 where Prenart lysimeters were installed. We observed no consistent differences between the two sampler types in concentrations of the analytes reported here. Depending on the volume of leachate collected, water samples were filtered using either 0.45 µm pore size, 33-mm-dia. cellulose acetate membrane filters when volumes were <50 ml, or 0.45 µm, 47-mm-dia. Supor 450 membrane filters for larger volumes. Samples were analyzed for NO3-, NH4+, total dissolved nitrogen (TDN), and DOC. The NO3- concentration was determined using a Dionex ICS1000 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was 0.006 mg NO3--N L-1. The NH4+ concentration in the samples was determined using a Thermo Scientific (formerly Dionex) ICS1100 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was similar. The DOC and TDN concentrations were determined using a Shimadzu TOC-Vcph carbon analyzer with a total nitrogen module (TNM-1); the detection limit of the system was ~0.08 mg C L-1 and ~0.04 mg N L-1. DON concentrations were estimated as the difference between TDN and dissolved inorganic N (NO3- + NH4+) concentrations. The NH4+ concentrations were only measured in the 2013-2015 crop-years, but they were always small relative to NO3- and thus their inclusion or lack of it was inconsequential to the DON estimation. Leaching rates were estimated on a crop-year basis, defined as the period from planting or emergence of the crop in the year indicated through the ensuing year until the next year’s planting or emergence. For each sampling point, the concentration was linearly interpolated between sampling dates during non-freezing periods (April through November). The concentrations in the unsampled winter period (December through March) were also linearly interpolated based on the preceding November and subsequent April samples. Solute leaching (kg ha-1) was calculated by multiplying the daily solute concentration in pore-water (mg L -1) by the modeled daily drainage rates (m3 ha-1) from the overlying soil. The drainage rates were obtained using the SALUS (Systems Approach for Land Use Sustainability) model (Basso and Ritchie, 2015). SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, nitrogen fertilizer application, tillage), and crop genetics. The SALUS water balance sub-model simulates surface run-off, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons (Basso and Ritchie, 2015). Drainage amounts and rates simulated by SALUS have been validated with measurements using large monolith lysimeters at a nearby site at KBS (Basso and Ritchie, 2005). On days when SALUS predicted no drainage, the leaching was assumed to be zero. The volume-weighted mean concentration for an entire crop-year was calculated as the sum of daily leaching (kg ha-1) divided by the sum of daily drainage rates (m3 ha-1). Weather data for the model were collected at the nearby KBS LTER meteorological station (lter.kbs.msu.edu). Leaching losses of dissolved organic carbon (DOC) and nitrogen (DON) from agricultural systems are important to water quality and carbon and nutrient balances but are rarely reported; the few available studies suggest linkages to litter production (DOC) and nitrogen fertilization (DON). In this study we examine the leaching of DOC, DON, NO3-, and NH4+ from no-till corn (maize) and perennial bioenergy crops (switchgrass, miscanthus, native grasses, restored prairie, and poplar) grown between 2009 and 2016 in a replicated field experiment in the upper Midwest U.S. Leaching was estimated from concentrations in soil water and modeled drainage (percolation) rates. DOC leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) among cropping systems averaged 15.4 and 4.6, respectively; N fertilization had no effect and poplar lost the most DOC (21.8 and 6.9, respectively). DON leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) under corn (the most heavily N-fertilized crop) averaged 4.5 and 1.0, respectively, which was higher than perennial grasses (mean: 1.5 and 0.5, respectively) and poplar (1.6 and 0.5, respectively). NO3- comprised the majority of total N leaching in all systems (59-92%). Average NO3- leaching (kg N ha-1 yr-1) under corn (35.3) was higher than perennial grasses (5.9) and poplar (7.2). NH4+ concentrations in soil water from all cropping systems were relatively low (<0.07 mg N L-1). Perennial crops leached more NO3- in the first few years after planting, and markedly less after. Among the fertilized crops, the leached N represented 14-38% of the added N over the study period; poplar lost the greatest proportion (38%) and corn was intermediate (23%). Requiring only one third or less of the N fertilization compared to corn, perennial bioenergy crops can substantially reduce N leaching and consequent movement into aquifers and surface waters. readme files are given that describe the data table
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0p2ngf1xb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 7 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0p2ngf1xb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Authors: Jiang, Hou; Lu, Ning;Surface solar radiation drives the water cycle and energy exchange on the earth's surface, and its diffuse component can promote carbon uptake in ecosystems by increasing the plant productivity. The accurate knowledge of their spatial distribution is of great importance to many studies and applications, such as the estimation of agricultural yield, carbon dynamics of terrestrial systems, site selection of solar power plants, as well as trends of regional climate changes. Therefore, we produce the hourly surface radiation datasets based on the hourly Multi-functional Transport Satellite (MTSAT) satellite imagery and the ground observations from the China Meteorology Administration (CMA) through deep learning techniques. The deep network is trained using training samples in 2008, and then utilized to generate the hourly radiation for other years. This dataset provides the gridded surface global and diffuse solar radiation in 2015 within 71.025°E - 141.025°E and 14.975°N - 59.975°N with an increment of 0.05°. Both the direct predicted hourly values and the integrated daily and monthly total values are available. The dataset should be useful for the analysis of the regional differences and temporal cycles of solar radiation in fine scales, and the impact of diffuse radiation on plant growth etc.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 11 Nov 2022Publisher:Dryad Authors: Eslamdoust, Jamshid;Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 5 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.qv9s4mwg7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023 NetherlandsPublisher:DANS Data Station Social Sciences and Humanities Authors: Gao, X.; De Hoge, I.E.; Fischer, A.R.H.;Fashion products made from repurposed materials (e.g., backpacks made from pineapple leaves) have become more prevalent nowadays, and their environmental sustainability is one of the core advantages. Yet, it is currently unclear how consumers respond to products made from repurposed materials. We conducted three experiments to examine the effects of three material features, namely function, sustainability, and distinguishability, on consumer preferences for fashion products made from repurposed materials. The results indicate that, when the function of repurposed materials is as good as that of conventional materials, consumers prefer a product made from repurposed materials over the same product made from conventional materials. Also, consumers in general prefer repurposed materials to be less visually distinguishable. Finally, when the sustainability of the repurposed products is emphasized, consumers appear more likely to choose products made from repurposed materials, even when these products have an inferior function. In conclusion, to promote fashion products made from repurposed materials, marketers may emphasize the function and sustainability of repurposed materials, and producers may manufacture repurposed materials that visually resemble conventional materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-x7c-pyv9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:4TU.ResearchData Kavun, Vitalii; van der Linden, Bart; Canossa, Stefano; Goryachev, Andrey; Bos , Emma E.; Santaclara, Jara Garcia; Smolentsev, Grigory; Repo, Eveliina; van der Veen, Monique A.;Dataset for the manuscript "Promoting photocatalytic activity of NH2-MIL-125(Ti) for H2 evolution reaction through creation of TiIII and CoI based proton reduction sites".Dataset includes raw N2 sorption data (.aif format), PXRD data of (Co@)NH2-MIL-125(Ti), Co K-edge XANES spectrum of Co foil and transitional XAS (70-1140 usec) and EXAFS data for Co@NH2-MIL-125(Ti), and raw TEM images of the photocatalysts. These data was used for analysis and plotting the figures for the manuscript.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/e3fdc43f-4d54-4f15-9c1f-f68c6b23fceb.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/e3fdc43f-4d54-4f15-9c1f-f68c6b23fceb.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 28 May 2020Publisher:Dryad Authors: Hussain, Mir Zaman; Robertson, G.Philip; Basso, Bruno; Hamilton, Stephen K.;Leaching dataset of dissolved organic carbon (DOC) and nitrogen (DON), nitrate (NO3+) and ammonium (NH4+) were collected from 6 cropping treatments (corn, switchgrass, miscanthus, native grass mix, restored prairie and poplar) established in the Bioenergy Cropping System Experiment (BCSE) which is a part of Great Lakes Bioenergy Research Center (www.glbrc.org) and Long Termn Ecological Research (LTER) program (www.lter.kbs.msu.edu). The site is located at the W.K. Kellogg Biological Station (42.3956° N, 85.3749° W and 288 m above sea level), 25 km from Kalamazoo in southwestern Michigan, USA. Prenart soil water samplers made of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) were installed in blocks 1 and 2 of the BCSE (Fig. S1), and Eijkelkamp soil water samplers made of ceramic (http://www.eijkelkamp.com) were installed in blocks 3 and 4 (there were no soil water samplers in block 5). All samplers were installed at 1.2 m depth at a 45° angle from the soil surface, approximately 20 cm into the unconsolidated sand of the 2Bt2 and 2E/Bt horizons. Beginning in 2009, soil water was sampled at weekly to biweekly intervals during non-frozen periods (April to November) by applying 50 kPa of vacuum for 24 hours, during which water was collected in glass bottles. During the 2009 and 2010 sampling periods we obtained fewer soil water samples from blocks 1 and 2 where Prenart lysimeters were installed. We observed no consistent differences between the two sampler types in concentrations of the analytes reported here. Depending on the volume of leachate collected, water samples were filtered using either 0.45 µm pore size, 33-mm-dia. cellulose acetate membrane filters when volumes were <50 ml, or 0.45 µm, 47-mm-dia. Supor 450 membrane filters for larger volumes. Samples were analyzed for NO3-, NH4+, total dissolved nitrogen (TDN), and DOC. The NO3- concentration was determined using a Dionex ICS1000 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was 0.006 mg NO3--N L-1. The NH4+ concentration in the samples was determined using a Thermo Scientific (formerly Dionex) ICS1100 ion chromatograph system with membrane suppression and conductivity detection; the detection limit of the system was similar. The DOC and TDN concentrations were determined using a Shimadzu TOC-Vcph carbon analyzer with a total nitrogen module (TNM-1); the detection limit of the system was ~0.08 mg C L-1 and ~0.04 mg N L-1. DON concentrations were estimated as the difference between TDN and dissolved inorganic N (NO3- + NH4+) concentrations. The NH4+ concentrations were only measured in the 2013-2015 crop-years, but they were always small relative to NO3- and thus their inclusion or lack of it was inconsequential to the DON estimation. Leaching rates were estimated on a crop-year basis, defined as the period from planting or emergence of the crop in the year indicated through the ensuing year until the next year’s planting or emergence. For each sampling point, the concentration was linearly interpolated between sampling dates during non-freezing periods (April through November). The concentrations in the unsampled winter period (December through March) were also linearly interpolated based on the preceding November and subsequent April samples. Solute leaching (kg ha-1) was calculated by multiplying the daily solute concentration in pore-water (mg L -1) by the modeled daily drainage rates (m3 ha-1) from the overlying soil. The drainage rates were obtained using the SALUS (Systems Approach for Land Use Sustainability) model (Basso and Ritchie, 2015). SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, nitrogen fertilizer application, tillage), and crop genetics. The SALUS water balance sub-model simulates surface run-off, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons (Basso and Ritchie, 2015). Drainage amounts and rates simulated by SALUS have been validated with measurements using large monolith lysimeters at a nearby site at KBS (Basso and Ritchie, 2005). On days when SALUS predicted no drainage, the leaching was assumed to be zero. The volume-weighted mean concentration for an entire crop-year was calculated as the sum of daily leaching (kg ha-1) divided by the sum of daily drainage rates (m3 ha-1). Weather data for the model were collected at the nearby KBS LTER meteorological station (lter.kbs.msu.edu). Leaching losses of dissolved organic carbon (DOC) and nitrogen (DON) from agricultural systems are important to water quality and carbon and nutrient balances but are rarely reported; the few available studies suggest linkages to litter production (DOC) and nitrogen fertilization (DON). In this study we examine the leaching of DOC, DON, NO3-, and NH4+ from no-till corn (maize) and perennial bioenergy crops (switchgrass, miscanthus, native grasses, restored prairie, and poplar) grown between 2009 and 2016 in a replicated field experiment in the upper Midwest U.S. Leaching was estimated from concentrations in soil water and modeled drainage (percolation) rates. DOC leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) among cropping systems averaged 15.4 and 4.6, respectively; N fertilization had no effect and poplar lost the most DOC (21.8 and 6.9, respectively). DON leaching rates (kg ha-1 yr-1) and volume-weighted mean concentrations (mg L-1) under corn (the most heavily N-fertilized crop) averaged 4.5 and 1.0, respectively, which was higher than perennial grasses (mean: 1.5 and 0.5, respectively) and poplar (1.6 and 0.5, respectively). NO3- comprised the majority of total N leaching in all systems (59-92%). Average NO3- leaching (kg N ha-1 yr-1) under corn (35.3) was higher than perennial grasses (5.9) and poplar (7.2). NH4+ concentrations in soil water from all cropping systems were relatively low (<0.07 mg N L-1). Perennial crops leached more NO3- in the first few years after planting, and markedly less after. Among the fertilized crops, the leached N represented 14-38% of the added N over the study period; poplar lost the greatest proportion (38%) and corn was intermediate (23%). Requiring only one third or less of the N fertilization compared to corn, perennial bioenergy crops can substantially reduce N leaching and consequent movement into aquifers and surface waters. readme files are given that describe the data table
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0p2ngf1xb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 7 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0p2ngf1xb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Authors: Jiang, Hou; Lu, Ning;Surface solar radiation drives the water cycle and energy exchange on the earth's surface, and its diffuse component can promote carbon uptake in ecosystems by increasing the plant productivity. The accurate knowledge of their spatial distribution is of great importance to many studies and applications, such as the estimation of agricultural yield, carbon dynamics of terrestrial systems, site selection of solar power plants, as well as trends of regional climate changes. Therefore, we produce the hourly surface radiation datasets based on the hourly Multi-functional Transport Satellite (MTSAT) satellite imagery and the ground observations from the China Meteorology Administration (CMA) through deep learning techniques. The deep network is trained using training samples in 2008, and then utilized to generate the hourly radiation for other years. This dataset provides the gridded surface global and diffuse solar radiation in 2015 within 71.025°E - 141.025°E and 14.975°N - 59.975°N with an increment of 0.05°. Both the direct predicted hourly values and the integrated daily and monthly total values are available. The dataset should be useful for the analysis of the regional differences and temporal cycles of solar radiation in fine scales, and the impact of diffuse radiation on plant growth etc.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: DataciteAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu