search
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • SDG [Beta]
    Clear
  • Country
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
80 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • 2. Zero hunger
  • English

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chopart, Jean-Louis; Bonnal, Laurent; Martiné, Jean-François; Sabatier, Daniel;

    Two studies conducted in Guadeloupe (West Indies) and Réunion (Indian Ocean) islands were designed to investigate the benefits of producing sugarcane as an energy crop and to assess the influence of agroclimatic factors on energy efficiency, respectively. In this context, it is essential to know the low heating value of the dry above-ground biomass (LHVd, MJ/kg) and its energy yield (EY, MJ/m2) in order to select the best varieties and set up a payment method for growers. Eighteen Poaceae (sugarcane and Erianthus) cultivars were compared under wet tropical environmental conditions in Guadeloupe. Three sugarcane cultivars were studied in four contrasting environments in Réunion. The partition sampling and biomass measurement procedures were identical at both locations. Low heating value (LHV) predictions were achieved using near-infrared reflectance spectroscopy (NIRS) after specific calibration (Guadeloupe), or arithmetically after lignocellulosic compound prediction (Réunion). In both studies, LHV variability was very low and slightly dependent on the site, cultivar and above-ground biomass components (millable stalks and tops, and green and dead leaves). Considering the overall dry above-ground biomass (DAB, kg/m2), the LHVd was calculated by averaging 159 samples (mean 16.65 MJ/kg) in Guadeloupe and 315 samples (mean 16.45 MJ/kg) for Réunion. An excellent linear relationship between the DAB and its EY, regardless of cultivar, age and environment, was found (n = 474 and R² = 0.99). Sugarcane energy content assessment could thus be simplified by measuring the DAB, while enabling development of a faster method of payment for growers based on the DAB measurement and the correlation between DAB and EY. Finally, the findings of this study should allow growers to rapidly determine the commercial value of their sugarcane crops, and also enable purchasers to assess the amount of recoverable energy. (Résumé d'auteur)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Scordia D.; orcid Scandurra A.;
    Scandurra A.
    ORCID
    Harvested from ORCID Public Data File

    Scandurra A. in OpenAIRE
    D'accorso G.; orcid bw Corinzia S. A.;
    Corinzia S. A.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Corinzia S. A. in OpenAIRE
    +4 Authors

    Reducing agronomic input supply can significantly contribute to decrease the environmental impact of bioenergy cropping systems. Currently, there is a renewed industrial interest in non-food oil crops for different end-uses application. Among species from Brassica genus, Brassica carinata A. Braun is an interesting winter annual crop in warm and semi-arid environments and may provide a rotation alternative with cereal crops, sourcing non-edible oil for the industry, additional incomes to the farmers and soil benefits. The present study compared four Brassica carinata lines (GID-6165, GIP-6164, GID-6091, GID-6084) under two different organic fertilization levels (80 and 160 kg N ha-1) in a semiarid Mediterranean area. These four lines have not been tested in Southern Italy previously, nor under the present low-input cultivation practices in semiarid Mediterranean area. Main findings showed a significant fertilization effect (P=0.05), with the high-input providing higher seed yields and harvest index than low-input. There was no genotype effect, however, the gap between potential (i.e. seed yield at the programmed plant density) and actual yields was rather high for GID-6165 and GID-6080. On the other hand, genotype had the largest effect on the thousand seed weight and the residual biomass yield. In general, GID-6091 and GID-6165 reached seed physiological maturity earlier than GID-6084 and GID-6164 lines. The present study proved that improved B. carinata lines can be grown in semiarid Mediterranean area under low-input organic systems, providing satisfactory seed yields. However, seedbed preparation was noticed to be key to narrow the gap between potential and actual seed yield, particularly under the present clay soil. Proceedings of the 30th European Biomass Conference and Exhibition, 9-12 May 2022, Online, pp. 120-124

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/30t...
    Conference object . 2022
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/30t...
      Conference object . 2022
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Spano D.; Camilli F.; Rosati A.; Paris P.; +1 Authors

    On behalf of the EURAF2020 Scientific and Organizing Committees, we are very pleased to introduce the rich collection of research on agroforestry illustrated in this book of abstracts and presented within the 5° European Agroforestry Conference. Unfortunately, as we all know, the COVID-19 pandemic has forced us to meet only remotely, despite all the efforts of our local and national organizers to hold the conference in presence. We are conscious about the completely different dimension, which does not allow participants to meet, discuss and live the conference supported by an environment socially vibrant and rich of cross-cultural stimuli as the real Sardinia can offer. Nevertheless, in accordance with the mission of the European Agroforestry Federation, EURAF, to promote agroforestry knowledge, we wish to support the sharing of data presented and solicit a fruitful scientific confrontation on agroforestry issues. This book is the result of a long and rigorous work performed by the authors (about 230 abstracts sent from 5 continents and 37 countries) and members of the Scientific Committee. The book will be one of the tools supporting such confrontation we are glad to foster from the heart of the Mediterranean.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Book . 2021
    Data sources: CNR ExploRA
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Book . 2021
      Data sources: CNR ExploRA
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Van Stappen, Florence; Schenkel, Yves; Brose, Isabelle; Castiaux, Annick; +4 Authors

    Sustainable agriculture leads today to important questions about the diversification of agricultural production and sources of income for farmers, the use of rural and arable land for food and non-food crops, the contribution of agriculture to climate change fighting and the supply of renewable energy. Bioenergy from agriculture is at the heart of these concerns, integrating sustainable development key components: environment and climate change, energy economics and energy supply, agriculture, rural and social development. The lack of primary and reliable data on bioenergy externalities from agriculture and the lack of decision-making tools are important non-technological barriers to the development of bioenergy from agriculture on a large scale, and, consequently, to the achievement of the national and regional objectives of sustainable development with respect to greenhouse gas mitigation, secure and diversified energy supply, rural development and employment and the future of agriculture. Furthermore, the recent worldwide controversies about transport biofuels, food shortages and increasing prices have demonstrated the urgent need for sustainability criteria applied to biofuels and bioenergy. Within this current sustainable development framework, a project entitled TEXBIAG integrating experts from 4 research institutions is financed by the Belgian Science Policy. The final objective of this project is to lead to an actual and significant contribution of bioenergy from agriculture to the mitigation of greenhouse gas emissions, to a secure and diversified energy supply and to farmers' incomes and rural development. To reach this final objective, the project develops three specific tools: (1) a database of primary quantitative data related to environmental and socio-economic impacts of bioenergy from agriculture integrating biomass logistics; (2) a mathematical model monetizing bioenergy externalities from agriculture; and (3) a prediction tool assessing the impacts of political decisions made in the framework ofthe development of bioenergy from agriculture on different economic sectors (energy, agriculture, industry, and environment). An integrated interface tool will be programmed where access to and update of the three tools will be prepared. The project methodology will be conducted for a given number of scenarios with sensitivity analysis wherever possible. The three main target groups that will benefit from the project are: the government officials and policy makers in the field of agriculture, energy and environment in Belgium and its two main regions, the small, medium and large energy companies and the agricultural sector

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw BUSATO, Patrizia;
    BUSATO, Patrizia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BUSATO, Patrizia in OpenAIRE
    orcid bw SOPEGNO, ALESSANDRO;
    SOPEGNO, ALESSANDRO
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    SOPEGNO, ALESSANDRO in OpenAIRE
    Bochtis D.; orcid bw BERRUTO, Remigio;
    BERRUTO, Remigio
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BERRUTO, Remigio in OpenAIRE

    The production of 2nd generation bioethanol has reached a pilot stage. Some bioethanol plants are under construction around the world. Among them, one is being built in North-West of Italy by Chemtex. The planned yearly production is 40,000 t/year of bioethanol. The crop being selected as biomass is the Giant Reed (Arundo donax), that is a perennial crop; do not require irrigation and its cultivation require much less inputs than corn for biomass. Farmers need some new information on these new crops for biomass production. Also new information is thus requested by the market or by public agencies: energy balance and life cycle analysis of crop cultivation, labor budget, etc. To make comparison between standard biomasses and new ones, there is a need of standard data and procedures in order to compare the cultivation systems, and to make all the requested assessment. The authors build a web application to do so within the frame of the IEE Project Bioenergy Farm. The tool allow the user, in anonymous way, to compute its own crop cultivation costs, including the use of machinery, manpower, and production factors in order to compare different farming systems. Both field and logistic operations could be evaluated. Also the energetic balance could be computed. The application represents a step toward the standardization of data and calculation procedures for working time, energy balance and operation costs. The application is accessible, free of charge, at http://bioenergyfarm.eu. In this paper an energy balance of giant reed crops, is presented. One farm with 10 fields (80 ha) located north of Turin, Italy, has been used to analyze the giant reed performance. The fields were located between 0.7 km and 14 km. The logistics plays an important role in quantifying the operation costs. For the case of Arundo donax this variation is translated to 90 €/ha between fields next to the farm and the one far from the farm (assuming 23 tDM/ha yield), depicting the importance of incorporating the geographical variability of the production system (that diversify the transport operations cost) and the field characteristics such as field shape, soil conditions etc. Similar analysis will be carried out on Giant Reed, on the same farm and the comparison will be made among the two crops. Proceedings of the 20th European Biomass Conference and Exhibition, 18-22 June 2012, Milan, Italy, pp. 191-195

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PURE Aarhus University
    Conference object . 2012
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/20t...
    Conference object . 2012
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      PURE Aarhus University
      Conference object . 2012
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/20t...
      Conference object . 2012
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: SEVINE E; GASOL CM; orcid bw BRUN, Filippo;
    BRUN, Filippo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BRUN, Filippo in OpenAIRE
    ROVIRA L; +6 Authors

    Objective of the study is to assess water consumption, energy and environmental performance of an experimental plantation of Populus spp. in short rotation forestry (SRF). The plantation is located in Girona, in north­eastern Spain, and covers an area of 1 ha and has been managed with two different scenarios, with a low density and a high density model. The evapotranspitation for two years of Populus spp. cultivation is 8,875 m3 ha-1 and the water 3 -1 -1 3 -1 -1 consumption has been 2,286 mhayr and 6,859 mhayr for low and high scenario, respectively. The energetic efficiency obtained is 11.18 and 6.84 and the environmental assessment shows a reduction of emissions of 10.16 g -1 -1 CO2 eq. MJ(low density) and 6.36 g CO2 eq. MJ(high density) in comparison with natural gas system. The anthropological pressure on the Ter basin is high and the introduction of irrigated crops would increase the pressure even more. However, water needed for growing SRF is lower than that one used for existing crops. Thus, cultivation of Populus spp. could be an alternative. In addition, the results of the analysis support that Populus spp. system is viable from an energy balance and environmental perspective for producing energy. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 321-327

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/18t...
    Conference object . 2010
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw LETO, Claudio;
    LETO, Claudio
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    LETO, Claudio in OpenAIRE
    orcid bw TUTTOLOMONDO, Teresa;
    TUTTOLOMONDO, Teresa
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    TUTTOLOMONDO, Teresa in OpenAIRE
    orcid bw LA BELLA, Salvatore;
    LA BELLA, Salvatore
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    LA BELLA, Salvatore in OpenAIRE
    BONSANGUE, Giuseppe; +1 Authors

    In recent years, interest in dedicated energy crops, in particular oilseed crops, in the Mediterranean area has risen. This is due both to an increase in energy demand in various sectors and the need to meet the objectives set by the European Union. The agro-energy sector may become an important economic opportunity for farms, especially when considering the use of the whole plant – the oil-rich seeds and the lignocellulosic crop residues. However, in economic terms, further study is needed in the management, quantification and subsequent use of crop residues. This research looks at the productive and energy potential of the seed and crop residues of safflower with the aim of introducing this oilseed into crop systems in Sicily. Research showed a good level of adaptability of the species to the test environment with satisfactory yields and crop residues showed a modest level of aptitude for energy purposes. Proceedings of the 19th European Biomass Conference and Exhibition, 6-10 June 2011, Berlin, Germany, pp. 514-519

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/19t...
    Conference object . 2011
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: L. DAVINO; L. LAZZERI; E. RAMPIN; orcid ZANETTI, FEDERICA;
    ZANETTI, FEDERICA
    ORCID
    Harvested from ORCID Public Data File

    ZANETTI, FEDERICA in OpenAIRE
    +3 Authors

    The Renewable Energy Directive (RED -2009/28/EC) defines values for greenhouse gas (GHG) emissions of each phase of biofuel production chains. The RED also claims that the Member State has to define typical GHG emissions for energy crop cultivation at a regional level. With this aim, in the framework of “Bioenergie” national project, a calculator (So.Fi.A.) was developed to determine the Life Cycle Assessment of oilseed cultivation in Italian Regions. This paper reports the results of the So.Fi.A. analysis focused on winter rapeseed cultivation in NE Italy (Veneto). Overall, during three years, 26 full field trials with different cultivation inputs were assessed. The incidence of farm inputs on GHG emissions was investigated showing how nitrogen fertilizers and diesel fuels for soil tillage provide the main contribution. Finally, despite a favourable net energetic balance, GHG emissions from the agricultural phase in 10 trials out of 26 were higher than the RED default value. In particular, defatted residual meals exploitation and, consequently, their impact allocation was necessary to keep the impact below the RED threshold. Carbon sequestration subsequent to residue soil incorporation was also evaluated, showing how further supplies of organic matter were necessary to offset natural soil organic matter depletion by mineralization. Proceedings of the 19th European Biomass Conference and Exhibition, 6-10 June 2011, Berlin, Germany, pp. 2617-2622

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/19t...
    Conference object . 2011
    Data sources: Datacite
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw SA Raccuia;
    SA Raccuia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    SA Raccuia in OpenAIRE
    orcid S Argento;
    S Argento
    ORCID
    Harvested from ORCID Public Data File

    S Argento in OpenAIRE
    C Leonardi; orcid V Toscano;
    V Toscano
    ORCID
    Harvested from ORCID Public Data File

    V Toscano in OpenAIRE
    +2 Authors

    Many research activities are in progress both in the EU and in the US to support and demonstrate the use of vegetable oils and their derivatives as diesel fuel. While research and development of biodiesel in the US has tended to concentrate on soybean-oil (soybean is by far the most widely cultivated oilseed crop in the US), oil from rapeseed (Brassica napus), which is the most common European oilseed crop, has become the dominate feedstock for biodiesel in Europe. Other species has recently become object of interest for their better adaptability to sub-optimal growing conditions respect to B. napus and for the oil yield and fatty acid composition. This work aims to evaluate the influence of genotype on the production of seed of different oil crops grown in south Sicily, an area characterized by the typical condition of Mediterranean environment. The trial was conducted in 2011 at the ISAFOM Catania experimental field. Four genotypes of Camelina sativa, Brassica carinata, Linum usitatissimum and two genotypes of Brassica napus and Carthamus tinctorius were studied. In the field during the crop cycle biological phases (plant emergence, flowering, physiological ripening and agronomic ripening) were detected. At harvest the grain yield and oil amount of the grain were recorded. Results showed the B. carinata gave the highest yields (18 q ha-1) followed by B. napus (14 q ha-1). All the genotypes of C. sativa resulted the less productive, while the oil amounts, expressed on g kg-1 d.m. resulted next to values 400, vs 200 recorded respectively in C. tinctorius and B. napus. Proceedings of the 22nd European Biomass Conference and Exhibition, 23-26 June 2014, Hamburg, Germany, pp. 247-250

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2014
    Data sources: CNR ExploRA
    https://dx.doi.org/10.5071/22n...
    Conference object . 2014
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2014
      Data sources: CNR ExploRA
      https://dx.doi.org/10.5071/22n...
      Conference object . 2014
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ciaramella B. R.; Scordia D.; orcid bw Cosentino Salvatore Luciano;
    Cosentino Salvatore Luciano
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Cosentino Salvatore Luciano in OpenAIRE
    Patanè Cristina; +3 Authors

    Soils give rise to many environmental problems, such as heavy metals pollutant that reduces water resources, leading to serious health problems for humans directly or indirectly, by the contamination of the food crops. Moreover, the cultivation of industrial crops in heavy metals contaminated land improves several ecosystem services, such as biodiversity maintenance and nutrient and water cycling, while promoting soil decontamination through a phytoremediation technique. This biological technique uses plants to remediate the contaminated land while generating economic value in land that used to be unproductivity. However, industrial crop selection is crucial for good results of phytoremediation. In this way, hemp appears suitable for heavy metals contaminated soil. It is possible to obtain high-quality cellulose (stems), oil, and hemp proteins when using different varieties. Still, it requires special attention for several physiological features, crop management, and site-specific selection of genotypes. This work aimed to evaluate the tolerance of two genotypes of industrial hemp (Futura 75 and Kc Dora) in soils contaminated by three heavy metals (Ni, Cd, Pb). The results confirm the possibility to use hemp as possible crops for phytoremediation. Moreover the difference observed among the two studied genotypes suggest the possibility to investigate others genotypes. Proceedings of the 30th European Biomass Conference and Exhibition, 9-12 May 2022, Online, pp. 178-182

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/30t...
    Conference object . 2022
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS - Università de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/30t...
      Conference object . 2022
      Data sources: Datacite
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph