search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
810 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • Restricted
  • 11. Sustainability
  • 12. Responsible consumption
  • 15. Life on land

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Digital Annex for the following thesis: Vila-Viçosa, C. (2023). Natural History, Biogeography and Evolution of the Iberian white oak syngameon (Quercus L. Sect. Quercus). Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Portugal Abstract: The genus Quercus L. is one of the most diverse and important group of woody plants, particularly when considering that they are the trees that rule the Northern Hemisphere forests. Oaks have an intricate Biogeography that criss-crosses diverse climatic and edaphic gradients, encompassing a huge ambiguity in terms of species delimitation. Frequently, the taxonomic proposals brought by traditional Linnaean Botany are either insufficient or rather inflate the number of species and nomenclatural assignments, which are further diluted into inconsistent taxonomic ranks, varying from species to subspecies and varieties. The supremacy given to morphological characters that are inherently fragile and plastic, spread across the distribution areas of distinct lineages, may carry ambiguity on the identification and proper species delimitation. From the oaks that are distributed across the Western Palearctic region, the ones that are deciduous or brevi-deciduous present higher levels of ambiguity in terms of species number and their delimitation. This ambiguity is particularly strong in the circummediterranean region and in the transitional areas between the two major biogeographic Regions of the western Palearctic region, the Euro-Siberian and Mediterranean. This degree of uncertainty, which increases towards the Southern European Peninsulas, is amplified by the ease that the different species of oaks tend to hybridize among them. The present work provides a holistic framework that covers multiple areas, from the taxonomic and evolutive study of this genus, to biogeography and molecular characterization. Its major objective was to resolve the species delimitation of the Iberian deciduous and marcescent oaks and putative introgression among them, enhancing the available knowledge about species diversity, which can foster suitable species and forest conservation. A specific objective was to cross-reference the natural history revision and the different taxonomic treatments brought by distinct authors, with personal observations. These data were then incorporated into ecological modelling and molecular characterization, which in the end fed a newly updated taxonomic proposal. In Section A we obtained results from extensive field, herbaria, and literature review, updating the nomenclature of the Portuguese and western Mediterranean oaks. Section B was supported by Section A’s in-depth review and enabled finer species distribution models, nurturing both hindcast (since ca. 20 Kyr) and forecast (2070-2100) exercises of the range dynamics of Mediterranean oaks species. The study of past and future range shifts solved important pending biogeographic questions, especially related to past range-shifts. Such past-range shifts improved our knowledge on species responses to climate dynamics and allowed a better anticipation of future responses of range shifts driven by climate change. Section C encompassed the molecular characterization of Iberian white oak species and their hybrids, whose delimitation is often faltering when one intends to infer about species rank, or hypothesize about the participation of parent taxon in natural hybrid swarms. This work allowed us to solve the phylogenetic backbone of western Palearctic white oaks, suggesting a significant segregation of the Iberian pedunculate oaks and unveiling two subsections inside Section Quercus. These subsections are biogeographically well-segregated and present diverse levels of introgression among species. Results demonstrated the efficiency of RADSeq for rebuilding the reticulate phylogeny of the Eurasian white oaks, showcasing the significance of the Iberian Peninsula as a major hotspot for oak diversity. We implemented a circular approach to these methods, which retro-fed themselves in terms of insight generation, enabling a powerful strategy to solve the evolutionary history of this difficult groups of plants. We estimate that the reticulate historical biogeography of the western Palearctic white oaks deserves further scrutiny by adding vicariant oak populations from northern Africa, the Near East and southern European Peninsulas. Methods should again follow this similar additive and sequential process of adjoining deep Natural History examination, with extensive fieldwork in type populations and genome-wide molecular surveys, in order to solve this group of plants. With the present work, we were able to significantly improve on the depiction of the basic unit of Biodiversity (the Species), in the complex Quercus genus. We provided tools to enable further efforts for the conservation of the Mediterranean oak forests, which overwhelm one of the most important (and one of the most threatened) Biomes for plant conservation at the global scale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    ZENODO
    Dataset . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility53
    visibilityviews53
    downloaddownloads27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      ZENODO
      Dataset . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milman, Anita;

    <h3>Project Overview</h3> <p>Jurisdictional boundaries of governmental agencies often do not align with the geographic or social boundaries of the policy issues they are tasked with addressing. This spatial mismatch is especially common in relation to natural resources and the environment. Where it occurs, achievement of policy goals may require coordination across jurisdictions, which can lead to mutual benefits. Yet, governmental agencies may view coordination as costly or as leading to a loss of autonomy. This project examined coordination decisions made by local level governmental agencies in California, as they formed Groundwater Sustainability Agencies (GSAs) and subsequently coordinated development of their first groundwater sustainability plans (GSPs) under California's Sustainable Groundwater Management Act (SGMA). The project addresses the question of how agencies make decisions and manage interactions when under a coordination mandate that allots agencies the discretion to decide how to coordinate. More specifically, it investigates:<ol><li>What factors influence decisions regarding the geographic extent of and parties involved in development of new formal agencies for groundwater management,</li><li>How do concerns about the potential risks of coordination affect the choice of coordination mechanisms,</li><li>How does the structure of agency interactions affect their achievement of the objectives of the coordination mandate, and</li><li>How do agencies make sense of a coordination mandate and how does that sense-making process influence the decisions agencies make when deciding how to respond to the mandate?</li></ol></p> <h3>Data Collection Overview</h3> <p>Data were collected between January 2018 and May 2020. The methods for data collection varied by data type.<ul><li>Secondary data on the physical, social, and institutional characteristics of groundwater basins were collected from California Department of Water Resources datasets, the American Community Survey, and the National Land Use Database.</li><li>Data on GSA formation and copies of GSPs and Coordination Agreements were obtained from the California’s SGMA Portal Website (https://sgma.water.ca.gov/portal/)</li><li>Meeting minutes and other documentation were obtained from the respective websites of local-level agencies that formed GSAs.</li><li>Interviews were conducted with representatives from 67 groundwater sustainability agencies. Interviewees spanned 17 of the 19 basins and 38 of the 44 groundwater sustainability plans produced. Interviewees were identified based on formal GSA contact information and selected based on formal notices to produce a GSP. Recruitment sought to interview representatives from least one GSA from each GSP group.</li><li>Participant observation was undertaken of more than 58 public meetings (in person, virtually, or reviewing recordings).</li></ul></p> <h3>Shared Data Organization</h3> <p>The shared data is organized into three folders. A GIS folder contains 16 relevant data files. An interview transcripts folder contains 52 de-identified transcripts from the interviews that were recorded and transcribed. Some interviewees did not agree to recording and transcription of the interviews, thus data from those interviews are not available. A tabular data folder contains 3 spreadsheet workbooks. These include a spreadsheet documenting coordination concerns at the basin-level; a spreadsheet documenting organizational forms and institutions adopted at the basin-level; and a spreadsheet documenting coordination outcomes at the basin-level. Each spreadsheet includes a copy of the codebook used in analyzing the data. This data project also includes 6 documentation files: a GIS metadata workbook, an interview catalog, an interview consent form, a redaction protocol, this data narrative, and an administrative README file.</p> <h3>Data Overview</h3> <p>The research involved a mixed-methods approach that combines information on agencies; the physical, social, and institutional characteristics of groundwater basins and the agencies located within them; formal filings; agreements; and plans developed by agencies; meeting minutes; interview data; and data from participant observation.</p>

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Qualitative Data Repository
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Qualitative Data Repository
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hansen, Anders Rhiger; Jacobsen, Mette Hove;

    Abstract In this article, we investigate the intergenerational transmission of sustainable consumption practices. Whereas previous studies have used self-reported attitudes and behaviour, this study uses data on actual energy consumption for space-heating and hot water combined with extensive panel data from Danish administrative registers. The paper shows significant intergenerational correlations between the energy consumption patterns of adults and their mothers, also when controlling for the energy consumption of the mother-in-law, where possible. Furthermore, it shows that the intergenerational correlation is slightly stronger for adults with lower income levels. These results suggest that energy consumption practices are shared and reproduced within the family. Following theories of practice, the intergenerational similarities in energy consumption practices refer to bodily learned practices that are indirectly transmitted and negotiated through family relations. In this way, these findings also contribute to a better understanding of how practical understanding regarding how to perform practices is transmitted within more ordinary aspects of consumption that play a less obvious role in distinction. To ensure more sustainable consumption practices in the future, this paper points to the importance of the role of family relations and the transmission of embodied practices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2020
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2020
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvador Baena-Morales; Alejandro Prieto-Ayuso; Gladys Merma-Molina; Sixto González-Víllora;

    The world, society and education are constantly evolving, and to respond to these changes, the main governmental institutions have been proposing different global strategies to focus efforts in the same direction. Currently, the United Nations and its 17 Sustainable Development Goals (SDG) have presented a series of indicators that could help to minimise the environmental, economic and social instability we are experiencing. In this sense, Education for Sustainable Development (ESD) has been described as a fundamental factor. Specifically, in previous work, we argued that physical education (PE) could be a good tool to contribute to SDGs. Based on this, no research analysing the voices of Physical Education Teachers (PET) on how this contribution could be made has been identified in previous literature. Therefore, the objectives of this research are: (1) to analyse the voices and opinions of active PETs in terms of the knowledge they have about Sustainable Development (SD); (2) to determine their opinions about the contribution that PE could make to SDGs; and finally, (3) to identify the challenges and limitations of pedagogical action of SD in PE. For this purpose, a qualitative analysis through a semi-structured interview with 41 active PETs was carried out. The main findings will be presented and discussed around four themes: (a) agreement on the concept of sustainability; (b) PE can contribute to the achievement of SDGs; (c) ambiguity in applying SDGs to PE lessons; and (d) teachers’ constraints on how to implement SDGs in PE. It seems to indicate that PETs do not have a multidimensional vision of sustainable development. While they recognise the potential of PE to contribute to SDGs through awareness raising and student learning, they point to its pedagogical and formative constraints as the main barriers to being able to contribute. They pointed to a lack of knowledge on how to do so, guidelines on how to integrate ESD, lack of involvement, shortage of time or resources in school physical education.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sport Education and Society
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sport Education and Society
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barbara Apicella; Carmela Russo; A. Tregrossi; Maria Maddalena Oliano; +3 Authors

    Diesel engine exhausts from a common rail 3.0 L F1C diesel engine were analyzed at two different load conditions of the WLTC testing cycle downstream of both the diesel particulate filter (DPF) and selective catalytic reactor (SCR) to verify their effect on the characteristics of carbon particulate matter. An array of chemical, physical and spectroscopic techniques (gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-Visible absorption and fluorescence spectroscopy) was applied for characterizing polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds and soot, constituting the particulate matter (PM) sampled from the exhaust. The engine was operated in half load (HL) (188 Nm, representing the more common condition for engine in urban traffic) and full load (FL) (452 Nm, representing the best performance of the engine operation) conditions, at the same engine speed (2000 rpm). Soot formation was enhanced in HL condition, with respect to FL, but, just because of the much lower soot amount, the after-treatment systems in this last condition resulted to be less efficient in the soot abatement. Indeed, the abatement through DPF was about 40% lower in the FL condition with respect to HL condition, and any significant further concentration decrease was found after SCR, in both conditions. By contrast, PAH concentration after DPF abatement was found to be higher in the HL with respect to FL condition. A further PAH concentration decrease of about 30% was found after the SCR in the HL condition whereas in FL the reduction was only about 5-6%. Also the heavy aromatic compounds having molecular weight above the GC-MS detection limit (300 u), were mitigated by SCR. Therefore, SCR did not cause a further soot reduction, whereas it was effective in largely reducing PAH and heavy aromatics emissions, especially in the lower temperature condition featuring the half-load condition, when combustion efficiency is worse. Moreover, SCR system reduced the emission of small particles probably due to an enhanced agglomeration of particles, with beneficial effect on the harmfulness to human health.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2020
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Experimental Thermal and Fluid Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2020
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Experimental Thermal and Fluid Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ali Ghannadzadeh; Majid Sadeqzadeh;

    Ethylene oxide production process is one of the highest energy consumers in chemical industry, and therefore even a slight improvement in its overall efficiency can have a significant impact on the sustainability of the process. Efficiency improvement can be carried out using the exergy-aided pinch analysis outlined in this paper. The overall exergy loss distribution in different unit operations of an ethylene oxide process was first evaluated and mapped out in the form of “visualized exergetic process flowsheet”. An initial analysis of the four main functional blocks of the process showed that the exothermic reaction block contained the largest exergy loss (6043 and 428 kJ/kg of internal and external losses, respectively) which can be reduced by isothermal mixing, as well as increasing reaction temperature and reduction in pressure drop. The absorption block was also estimated to have the second highest contribution with total exergy losses of 3640 kJ/kg which were mainly due to the cooling column. These losses were then recommended to be reduced by improvements in the concentration and temperature gradients along the tower. Following the block-wise analysis, exergy analysis was then carried out for individual unit operations in each block to pinpoint the main sources of thermal exergetic inefficiency. Thermal solutions to reduce losses were also proposed in accordance with the identified sources of inefficiency, leading to a comprehensive list of cold and hot process streams that could be introduced to reduce losses. Finally, pinch analysis was brought into action to estimate the minimum energy requirements, to select utilities, and to design heat exchanger network. Thus, the methodology used in this work took advantage of both exergy and pinch analyses. The combined thermal-exergy-based pinch approach helped to set energy targets so that all the thermal possible solutions supported by exergy analysis were considered, preventing exclusion of any hot or cold process stream with high potential for heat integration during pinch analysis. Results indicated that the minimum cold utility requirement could be reduced from 601.64 MW (obtained via conventional pinch analysis) to 577.82 MW through screening of streams by the combined methodology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ghislain Dubois; Femke Stoverinck; Bas Amelung;

    Climate change forces society to adapt. Adaptation strategies are preferably based on the best available climate information. Climate projections, however, often inform adaptation strategies after being interpreted once or several times. This process affects the original message put forward by climate scientists when presenting the basic climate projections, in particular regarding uncertainties. The nature of this effect and its implications for decision-making are as yet poorly understood. This chapter explores the nature and consequences of (a) the communication tools used by scientists and experts and (b) changes in the communicated information as it travels through the decision-making process. It does so by analyzing observatories; the interpretative steps taken in a sample of 25 documents, pertaining to the field of public policies for climate change impact assessment and adaptation strategies. Five phases in the provisioning of climate information are distinguished: pre-existing knowledge (i.e., climate models and data), climate change projection, impact assessment, adaptation strategy, and adaptation plan. Between the phases, climate information is summarized and synthesized in order to be passed on. The results show that in the sample, information on uncertainty is underrepresented: e.g., studies focus on only one scenario and/or disregard probability distributions. In addition, visualization tools are often used ineffectively, leading to confusion and unintended interpretations. Several recommendations are presented. While climatologists need better training in communication issues, decision-makers also need training in climatology to adopt more cautious and robust adaptation strategies that account for the uncertainty inherent in climate projections.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Argyris Kanellopoulos; Aleksander Banasik; G.D.H. Claassen; Jacqueline M. Bloemhof-Ruwaard;

    Due to the increasing awareness of climate change, depletion of natural resources, and increasing world population, companies in the agri-food sector need to redesign their existing supply chains and take into account both the economic and environmental impact of their operations. In practice not all the required information is available in advance due to various sources of uncertainty in agri-food supply chains. In this research a multi-objective two-stage stochastic programming model is proposed to analyse and evaluate the economic and environmental impacts to account for uncertainty in agri-food supply chains. A mushroom supply chain in the Netherlands is presented as an illustrative case study. Optimal production planning decisions calculated with a two-stage stochastic programming model are compared with the results of an equivalent deterministic model. The results of the optimizations show that accounting for stochasticity in important model parameters can reduce the difference between expected and realized economic performance by approximately 4% on average. Moreover, this paper demonstrates that including stochastic model parameters can reduce the environmental impact without compromising the current economic performance. Given the assumptions in the setup of the case study and the available information, it is concluded that applying a 2-stage stochastic programming approach for production planning decisions can lead to improved economic and environmental performance in an agri-food supply chain. New findings in real-life case studies are needed to get profound insights and understanding on the impact of uncertainty on production planning decisions in sustainable agri-food supply chains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    60
    citations60
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roberto A. Varella; Gonçalo Duarte; Gonçalo Duarte; Marta V. Faria; +2 Authors

    Abstract This work assesses the impacts of aggressive driving behavior on pollutants emissions and energy consumption at a city level. Furthermore, it performs an economic analysis considering the potential avoided emissions and fuel savings and discusses potential policy measures to address this topic. The results showed that aggressive driving significantly impacts energy consumption and emissions, with energy consumption increasing by more than ∼200% and emissions by 330% for aggressive driving compared to non-aggressive driving (in MJ/km and in g/km, respectively). This increment was found to be even higher for diesel vehicles than for gasoline vehicles. On the contrary, gasoline vehicles showed higher percentages of increase for most emissions (CO, NOx and NO). Results also revealed that aggressive driving impacts are higher for local streets when examining the city level. Moreover, the economic analysis showed that significant cost reductions may be achieved by avoiding aggressive driving, reaching up to 52.5 k€ on a daily basis. In conclusion, this study is of particular relevance to policy makers and urban planners, enabling to obtain a comprehensive overview of the impacts of aggressive driving behaviors at a city level and providing new insights to perform further developments and to assess the feasibility of the implementation of policy measures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility88
    visibilityviews88
    downloaddownloads52
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
810 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Digital Annex for the following thesis: Vila-Viçosa, C. (2023). Natural History, Biogeography and Evolution of the Iberian white oak syngameon (Quercus L. Sect. Quercus). Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Portugal Abstract: The genus Quercus L. is one of the most diverse and important group of woody plants, particularly when considering that they are the trees that rule the Northern Hemisphere forests. Oaks have an intricate Biogeography that criss-crosses diverse climatic and edaphic gradients, encompassing a huge ambiguity in terms of species delimitation. Frequently, the taxonomic proposals brought by traditional Linnaean Botany are either insufficient or rather inflate the number of species and nomenclatural assignments, which are further diluted into inconsistent taxonomic ranks, varying from species to subspecies and varieties. The supremacy given to morphological characters that are inherently fragile and plastic, spread across the distribution areas of distinct lineages, may carry ambiguity on the identification and proper species delimitation. From the oaks that are distributed across the Western Palearctic region, the ones that are deciduous or brevi-deciduous present higher levels of ambiguity in terms of species number and their delimitation. This ambiguity is particularly strong in the circummediterranean region and in the transitional areas between the two major biogeographic Regions of the western Palearctic region, the Euro-Siberian and Mediterranean. This degree of uncertainty, which increases towards the Southern European Peninsulas, is amplified by the ease that the different species of oaks tend to hybridize among them. The present work provides a holistic framework that covers multiple areas, from the taxonomic and evolutive study of this genus, to biogeography and molecular characterization. Its major objective was to resolve the species delimitation of the Iberian deciduous and marcescent oaks and putative introgression among them, enhancing the available knowledge about species diversity, which can foster suitable species and forest conservation. A specific objective was to cross-reference the natural history revision and the different taxonomic treatments brought by distinct authors, with personal observations. These data were then incorporated into ecological modelling and molecular characterization, which in the end fed a newly updated taxonomic proposal. In Section A we obtained results from extensive field, herbaria, and literature review, updating the nomenclature of the Portuguese and western Mediterranean oaks. Section B was supported by Section A’s in-depth review and enabled finer species distribution models, nurturing both hindcast (since ca. 20 Kyr) and forecast (2070-2100) exercises of the range dynamics of Mediterranean oaks species. The study of past and future range shifts solved important pending biogeographic questions, especially related to past range-shifts. Such past-range shifts improved our knowledge on species responses to climate dynamics and allowed a better anticipation of future responses of range shifts driven by climate change. Section C encompassed the molecular characterization of Iberian white oak species and their hybrids, whose delimitation is often faltering when one intends to infer about species rank, or hypothesize about the participation of parent taxon in natural hybrid swarms. This work allowed us to solve the phylogenetic backbone of western Palearctic white oaks, suggesting a significant segregation of the Iberian pedunculate oaks and unveiling two subsections inside Section Quercus. These subsections are biogeographically well-segregated and present diverse levels of introgression among species. Results demonstrated the efficiency of RADSeq for rebuilding the reticulate phylogeny of the Eurasian white oaks, showcasing the significance of the Iberian Peninsula as a major hotspot for oak diversity. We implemented a circular approach to these methods, which retro-fed themselves in terms of insight generation, enabling a powerful strategy to solve the evolutionary history of this difficult groups of plants. We estimate that the reticulate historical biogeography of the western Palearctic white oaks deserves further scrutiny by adding vicariant oak populations from northern Africa, the Near East and southern European Peninsulas. Methods should again follow this similar additive and sequential process of adjoining deep Natural History examination, with extensive fieldwork in type populations and genome-wide molecular surveys, in order to solve this group of plants. With the present work, we were able to significantly improve on the depiction of the basic unit of Biodiversity (the Species), in the complex Quercus genus. We provided tools to enable further efforts for the conservation of the Mediterranean oak forests, which overwhelm one of the most important (and one of the most threatened) Biomes for plant conservation at the global scale.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2023
    Data sources: Datacite
    ZENODO
    Dataset . 2023
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility53
    visibilityviews53
    downloaddownloads27
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2023
      Data sources: Datacite
      ZENODO
      Dataset . 2023
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milman, Anita;

    <h3>Project Overview</h3> <p>Jurisdictional boundaries of governmental agencies often do not align with the geographic or social boundaries of the policy issues they are tasked with addressing. This spatial mismatch is especially common in relation to natural resources and the environment. Where it occurs, achievement of policy goals may require coordination across jurisdictions, which can lead to mutual benefits. Yet, governmental agencies may view coordination as costly or as leading to a loss of autonomy. This project examined coordination decisions made by local level governmental agencies in California, as they formed Groundwater Sustainability Agencies (GSAs) and subsequently coordinated development of their first groundwater sustainability plans (GSPs) under California's Sustainable Groundwater Management Act (SGMA). The project addresses the question of how agencies make decisions and manage interactions when under a coordination mandate that allots agencies the discretion to decide how to coordinate. More specifically, it investigates:<ol><li>What factors influence decisions regarding the geographic extent of and parties involved in development of new formal agencies for groundwater management,</li><li>How do concerns about the potential risks of coordination affect the choice of coordination mechanisms,</li><li>How does the structure of agency interactions affect their achievement of the objectives of the coordination mandate, and</li><li>How do agencies make sense of a coordination mandate and how does that sense-making process influence the decisions agencies make when deciding how to respond to the mandate?</li></ol></p> <h3>Data Collection Overview</h3> <p>Data were collected between January 2018 and May 2020. The methods for data collection varied by data type.<ul><li>Secondary data on the physical, social, and institutional characteristics of groundwater basins were collected from California Department of Water Resources datasets, the American Community Survey, and the National Land Use Database.</li><li>Data on GSA formation and copies of GSPs and Coordination Agreements were obtained from the California’s SGMA Portal Website (https://sgma.water.ca.gov/portal/)</li><li>Meeting minutes and other documentation were obtained from the respective websites of local-level agencies that formed GSAs.</li><li>Interviews were conducted with representatives from 67 groundwater sustainability agencies. Interviewees spanned 17 of the 19 basins and 38 of the 44 groundwater sustainability plans produced. Interviewees were identified based on formal GSA contact information and selected based on formal notices to produce a GSP. Recruitment sought to interview representatives from least one GSA from each GSP group.</li><li>Participant observation was undertaken of more than 58 public meetings (in person, virtually, or reviewing recordings).</li></ul></p> <h3>Shared Data Organization</h3> <p>The shared data is organized into three folders. A GIS folder contains 16 relevant data files. An interview transcripts folder contains 52 de-identified transcripts from the interviews that were recorded and transcribed. Some interviewees did not agree to recording and transcription of the interviews, thus data from those interviews are not available. A tabular data folder contains 3 spreadsheet workbooks. These include a spreadsheet documenting coordination concerns at the basin-level; a spreadsheet documenting organizational forms and institutions adopted at the basin-level; and a spreadsheet documenting coordination outcomes at the basin-level. Each spreadsheet includes a copy of the codebook used in analyzing the data. This data project also includes 6 documentation files: a GIS metadata workbook, an interview catalog, an interview consent form, a redaction protocol, this data narrative, and an administrative README file.</p> <h3>Data Overview</h3> <p>The research involved a mixed-methods approach that combines information on agencies; the physical, social, and institutional characteristics of groundwater basins and the agencies located within them; formal filings; agreements; and plans developed by agencies; meeting minutes; interview data; and data from participant observation.</p>

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Qualitative Data Repository
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Qualitative Data Repository
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hansen, Anders Rhiger; Jacobsen, Mette Hove;

    Abstract In this article, we investigate the intergenerational transmission of sustainable consumption practices. Whereas previous studies have used self-reported attitudes and behaviour, this study uses data on actual energy consumption for space-heating and hot water combined with extensive panel data from Danish administrative registers. The paper shows significant intergenerational correlations between the energy consumption patterns of adults and their mothers, also when controlling for the energy consumption of the mother-in-law, where possible. Furthermore, it shows that the intergenerational correlation is slightly stronger for adults with lower income levels. These results suggest that energy consumption practices are shared and reproduced within the family. Following theories of practice, the intergenerational similarities in energy consumption practices refer to bodily learned practices that are indirectly transmitted and negotiated through family relations. In this way, these findings also contribute to a better understanding of how practical understanding regarding how to perform practices is transmitted within more ordinary aspects of consumption that play a less obvious role in distinction. To ensure more sustainable consumption practices in the future, this paper points to the importance of the role of family relations and the transmission of embodied practices.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2020
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VBNarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2020
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvador Baena-Morales; Alejandro Prieto-Ayuso; Gladys Merma-Molina; Sixto González-Víllora;

    The world, society and education are constantly evolving, and to respond to these changes, the main governmental institutions have been proposing different global strategies to focus efforts in the same direction. Currently, the United Nations and its 17 Sustainable Development Goals (SDG) have presented a series of indicators that could help to minimise the environmental, economic and social instability we are experiencing. In this sense, Education for Sustainable Development (ESD) has been described as a fundamental factor. Specifically, in previous work, we argued that physical education (PE) could be a good tool to contribute to SDGs. Based on this, no research analysing the voices of Physical Education Teachers (PET) on how this contribution could be made has been identified in previous literature. Therefore, the objectives of this research are: (1) to analyse the voices and opinions of active PETs in terms of the knowledge they have about Sustainable Development (SD); (2) to determine their opinions about the contribution that PE could make to SDGs; and finally, (3) to identify the challenges and limitations of pedagogical action of SD in PE. For this purpose, a qualitative analysis through a semi-structured interview with 41 active PETs was carried out. The main findings will be presented and discussed around four themes: (a) agreement on the concept of sustainability; (b) PE can contribute to the achievement of SDGs; (c) ambiguity in applying SDGs to PE lessons; and (d) teachers’ constraints on how to implement SDGs in PE. It seems to indicate that PETs do not have a multidimensional vision of sustainable development. While they recognise the potential of PE to contribute to SDGs through awareness raising and student learning, they point to its pedagogical and formative constraints as the main barriers to being able to contribute. They pointed to a lack of knowledge on how to do so, guidelines on how to integrate ESD, lack of involvement, shortage of time or resources in school physical education.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sport Education and Society
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sport Education and Society
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Barbara Apicella; Carmela Russo; A. Tregrossi; Maria Maddalena Oliano; +3 Authors

    Diesel engine exhausts from a common rail 3.0 L F1C diesel engine were analyzed at two different load conditions of the WLTC testing cycle downstream of both the diesel particulate filter (DPF) and selective catalytic reactor (SCR) to verify their effect on the characteristics of carbon particulate matter. An array of chemical, physical and spectroscopic techniques (gas chromatography coupled with mass spectrometry (GC-MS), mobility analyzer, UV-Visible absorption and fluorescence spectroscopy) was applied for characterizing polycyclic aromatic hydrocarbons (PAH), heavy aromatic compounds and soot, constituting the particulate matter (PM) sampled from the exhaust. The engine was operated in half load (HL) (188 Nm, representing the more common condition for engine in urban traffic) and full load (FL) (452 Nm, representing the best performance of the engine operation) conditions, at the same engine speed (2000 rpm). Soot formation was enhanced in HL condition, with respect to FL, but, just because of the much lower soot amount, the after-treatment systems in this last condition resulted to be less efficient in the soot abatement. Indeed, the abatement through DPF was about 40% lower in the FL condition with respect to HL condition, and any significant further concentration decrease was found after SCR, in both conditions. By contrast, PAH concentration after DPF abatement was found to be higher in the HL with respect to FL condition. A further PAH concentration decrease of about 30% was found after the SCR in the HL condition whereas in FL the reduction was only about 5-6%. Also the heavy aromatic compounds having molecular weight above the GC-MS detection limit (300 u), were mitigated by SCR. Therefore, SCR did not cause a further soot reduction, whereas it was effective in largely reducing PAH and heavy aromatics emissions, especially in the lower temperature condition featuring the half-load condition, when combustion efficiency is worse. Moreover, SCR system reduced the emission of small particles probably due to an enhanced agglomeration of particles, with beneficial effect on the harmfulness to human health.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2020
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Experimental Thermal and Fluid Science
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    61
    citations61
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2020
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Experimental Thermal and Fluid Science
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ali Ghannadzadeh; Majid Sadeqzadeh;

    Ethylene oxide production process is one of the highest energy consumers in chemical industry, and therefore even a slight improvement in its overall efficiency can have a significant impact on the sustainability of the process. Efficiency improvement can be carried out using the exergy-aided pinch analysis outlined in this paper. The overall exergy loss distribution in different unit operations of an ethylene oxide process was first evaluated and mapped out in the form of “visualized exergetic process flowsheet”. An initial analysis of the four main functional blocks of the process showed that the exothermic reaction block contained the largest exergy loss (6043 and 428 kJ/kg of internal and external losses, respectively) which can be reduced by isothermal mixing, as well as increasing reaction temperature and reduction in pressure drop. The absorption block was also estimated to have the second highest contribution with total exergy losses of 3640 kJ/kg which were mainly due to the cooling column. These losses were then recommended to be reduced by improvements in the concentration and temperature gradients along the tower. Following the block-wise analysis, exergy analysis was then carried out for individual unit operations in each block to pinpoint the main sources of thermal exergetic inefficiency. Thermal solutions to reduce losses were also proposed in accordance with the identified sources of inefficiency, leading to a comprehensive list of cold and hot process streams that could be introduced to reduce losses. Finally, pinch analysis was brought into action to estimate the minimum energy requirements, to select utilities, and to design heat exchanger network. Thus, the methodology used in this work took advantage of both exergy and pinch analyses. The combined thermal-exergy-based pinch approach helped to set energy targets so that all the thermal possible solutions supported by exergy analysis were considered, preventing exclusion of any hot or cold process stream with high potential for heat integration during pinch analysis. Results indicated that the minimum cold utility requirement could be reduced from 601.64 MW (obtained via conventional pinch analysis) to 577.82 MW through screening of streams by the combined methodology.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2017 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2017 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ghislain Dubois; Femke Stoverinck; Bas Amelung;

    Climate change forces society to adapt. Adaptation strategies are preferably based on the best available climate information. Climate projections, however, often inform adaptation strategies after being interpreted once or several times. This process affects the original message put forward by climate scientists when presenting the basic climate projections, in particular regarding uncertainties. The nature of this effect and its implications for decision-making are as yet poorly understood. This chapter explores the nature and consequences of (a) the communication tools used by scientists and experts and (b) changes in the communicated information as it travels through the decision-making process. It does so by analyzing observatories; the interpretative steps taken in a sample of 25 documents, pertaining to the field of public policies for climate change impact assessment and adaptation strategies. Five phases in the provisioning of climate information are distinguished: pre-existing knowledge (i.e., climate models and data), climate change projection, impact assessment, adaptation strategy, and adaptation plan. Between the phases, climate information is summarized and synthesized in order to be passed on. The results show that in the sample, information on uncertainty is underrepresented: e.g., studies focus on only one scenario and/or disregard probability distributions. In addition, visualization tools are often used ineffectively, leading to confusion and unintended interpretations. Several recommendations are presented. While climatologists need better training in communication issues, decision-makers also need training in climatology to adopt more cautious and robust adaptation strategies that account for the uncertainty inherent in climate projections.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2018 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DANS (Data Archiving...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2018 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Argyris Kanellopoulos; Aleksander Banasik; G.D.H. Claassen; Jacqueline M. Bloemhof-Ruwaard;

    Due to the increasing awareness of climate change, depletion of natural resources, and increasing world population, companies in the agri-food sector need to redesign their existing supply chains and take into account both the economic and environmental impact of their operations. In practice not all the required information is available in advance due to various sources of uncertainty in agri-food supply chains. In this research a multi-objective two-stage stochastic programming model is proposed to analyse and evaluate the economic and environmental impacts to account for uncertainty in agri-food supply chains. A mushroom supply chain in the Netherlands is presented as an illustrative case study. Optimal production planning decisions calculated with a two-stage stochastic programming model are compared with the results of an equivalent deterministic model. The results of the optimizations show that accounting for stochasticity in important model parameters can reduce the difference between expected and realized economic performance by approximately 4% on average. Moreover, this paper demonstrates that including stochastic model parameters can reduce the environmental impact without compromising the current economic performance. Given the assumptions in the setup of the case study and the available information, it is concluded that applying a 2-stage stochastic programming approach for production planning decisions can lead to improved economic and environmental performance in an agri-food supply chain. New findings in real-life case studies are needed to get profound insights and understanding on the impact of uncertainty on production planning decisions in sustainable agri-food supply chains.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    60
    citations60
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cleaner P...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Sustainability is commonly assessed along environmental, societal, economic and technological dimensions. A crucial aspect of sustainability is that inter-generational equality must be ensured. This requires that sustainability is attained in the here and now as well as into the future. Therefore, what is perceived as 'sustainable' changes as a function of societal opinion and technological and scientific progress. A concept that describes the ability of systems to change is adaptive capacity. Literature suggests that the ability of systems to adapt is an integral part of sustainable development. This paper demonstrates that indicators measuring adaptive capacity are underrepresented in current urban water sustainability studies. Furthermore, it is discussed under which sustainability dimensions adaptive capacity indicators are lacking and why. Of the >90 indicators analysed, only nine are adaptive capacity indicators, of which six are socio-cultural, two technological, one economical and none environmental. This infrequent use of adaptive capacity indicators in sustainability assessments led to the conclusion that the challenge of dynamic and uncertain urban water systems is, with the exception of the socio-cultural dimension, not yet sufficiently reflected in the application of urban water sustainability indicators. This raises concerns about the progress towards urban water systems that can transform as a response variation and change. Therefore, research should focus on developing methods and indicators that can define, evaluate and quantify adaptive capacity under the economic, environmental and technical dimension of sustainability. Furthermore, it should be evaluated whether sustainability frameworks that focus on the control processes of urban water systems are more suitable for measuring adaptive capacity, than the assessments along environmental, economic, socio-cultural and technological dimensions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roberto A. Varella; Gonçalo Duarte; Gonçalo Duarte; Marta V. Faria; +2 Authors

    Abstract This work assesses the impacts of aggressive driving behavior on pollutants emissions and energy consumption at a city level. Furthermore, it performs an economic analysis considering the potential avoided emissions and fuel savings and discusses potential policy measures to address this topic. The results showed that aggressive driving significantly impacts energy consumption and emissions, with energy consumption increasing by more than ∼200% and emissions by 330% for aggressive driving compared to non-aggressive driving (in MJ/km and in g/km, respectively). This increment was found to be even higher for diesel vehicles than for gasoline vehicles. On the contrary, gasoline vehicles showed higher percentages of increase for most emissions (CO, NOx and NO). Results also revealed that aggressive driving impacts are higher for local streets when examining the city level. Moreover, the economic analysis showed that significant cost reductions may be achieved by avoiding aggressive driving, reaching up to 52.5 k€ on a daily basis. In conclusion, this study is of particular relevance to policy makers and urban planners, enabling to obtain a comprehensive overview of the impacts of aggressive driving behaviors at a city level and providing new insights to perform further developments and to assess the feasibility of the implementation of policy measures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility88
    visibilityviews88
    downloaddownloads52
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.