search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,988 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 7. Clean energy
  • 6. Clean water

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hedberg, Per; Sundquist, Göran;

    Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a ´Youth team´, consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone´s opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership. Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a 'Youth team', consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone's opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;

    Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramos Galán, Andrés; Pérez Arriaga, José Ignacio; Bogas Gálvez, Juan;

    Artículos en revistas It is shown how a standard nonlinear programming approach can be applied to solve a sophisticated version of the static optimal mix problem in generation planning. The model presented includes technical minima of thermal capacity, detailed operating models of storage-hydro and pumped-hydro units, a realistic model of capital costs for hydro plants, operating reserve and minimum demand constraints, and capacity already in existence. The model formulation is in a format that can be directly handled by the well-known MINOS code and can be efficiently solved. The use of a general-purpose nonlinear optimization program results in a great flexibility, making it possible to modify the model formulation easily or to adapt it to the characteristics of a particular electric system. A realistic application to the Spanish generation system is presented info:eu-repo/semantics/publishedVersion

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 1989 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Power Engineering Review
    Article . 1989 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 1989 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Power Engineering Review
      Article . 1989 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Holmberg, Sören; Branzén, Karl; Westerståhl, Jörgen;

    I studiet av kärnkraftsfrågan i valet 1976 ingår två undersökningar, dels en intervjuundersökning av väljarna - Väljarna och kärnkraften - dels föreliggande undersökning som är en innehållsanalys av energidebatten i massmedia. Datainsamlingen innefattar en systematisk genomgång av 20 dagstidningar under fem veckor hösten 1976. Totalt registrerades 2807 ledare, nyhetsartiklar, insändare, annonser, krönikor m.m. som innehöll stoff kring kärnkraften eller energiproblemen i allmänhet. Enkätens kvalitet har prövats - bortfallens jämnhet mot tillgängliga registerdata och föregående enkäters karakteristika, svarens inbördes logik och fullständighet. Statistisk vägning har utförts för mindre över- och underrepresentation av befolkningsgrupper i ett 48-cellersmönster. This study was conducted in connection with the 1976 election study in order to study how the question of nuclear power has been handled by the press. Twenty daily newspapers were analysed during five weeks in the autumn 1976. The papers analysed were chosen after their political preferences in order to represent the different views of the major political parties. The study includes 2807 editorials, articles, advertisements and other materials containing views on the use of nuclear power.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1984
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1984
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1984
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1984
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milman, Anita;

    <h3>Project Overview</h3> <p>Jurisdictional boundaries of governmental agencies often do not align with the geographic or social boundaries of the policy issues they are tasked with addressing. This spatial mismatch is especially common in relation to natural resources and the environment. Where it occurs, achievement of policy goals may require coordination across jurisdictions, which can lead to mutual benefits. Yet, governmental agencies may view coordination as costly or as leading to a loss of autonomy. This project examined coordination decisions made by local level governmental agencies in California, as they formed Groundwater Sustainability Agencies (GSAs) and subsequently coordinated development of their first groundwater sustainability plans (GSPs) under California's Sustainable Groundwater Management Act (SGMA). The project addresses the question of how agencies make decisions and manage interactions when under a coordination mandate that allots agencies the discretion to decide how to coordinate. More specifically, it investigates:<ol><li>What factors influence decisions regarding the geographic extent of and parties involved in development of new formal agencies for groundwater management,</li><li>How do concerns about the potential risks of coordination affect the choice of coordination mechanisms,</li><li>How does the structure of agency interactions affect their achievement of the objectives of the coordination mandate, and</li><li>How do agencies make sense of a coordination mandate and how does that sense-making process influence the decisions agencies make when deciding how to respond to the mandate?</li></ol></p> <h3>Data Collection Overview</h3> <p>Data were collected between January 2018 and May 2020. The methods for data collection varied by data type.<ul><li>Secondary data on the physical, social, and institutional characteristics of groundwater basins were collected from California Department of Water Resources datasets, the American Community Survey, and the National Land Use Database.</li><li>Data on GSA formation and copies of GSPs and Coordination Agreements were obtained from the California’s SGMA Portal Website (https://sgma.water.ca.gov/portal/)</li><li>Meeting minutes and other documentation were obtained from the respective websites of local-level agencies that formed GSAs.</li><li>Interviews were conducted with representatives from 67 groundwater sustainability agencies. Interviewees spanned 17 of the 19 basins and 38 of the 44 groundwater sustainability plans produced. Interviewees were identified based on formal GSA contact information and selected based on formal notices to produce a GSP. Recruitment sought to interview representatives from least one GSA from each GSP group.</li><li>Participant observation was undertaken of more than 58 public meetings (in person, virtually, or reviewing recordings).</li></ul></p> <h3>Shared Data Organization</h3> <p>The shared data is organized into three folders. A GIS folder contains 16 relevant data files. An interview transcripts folder contains 52 de-identified transcripts from the interviews that were recorded and transcribed. Some interviewees did not agree to recording and transcription of the interviews, thus data from those interviews are not available. A tabular data folder contains 3 spreadsheet workbooks. These include a spreadsheet documenting coordination concerns at the basin-level; a spreadsheet documenting organizational forms and institutions adopted at the basin-level; and a spreadsheet documenting coordination outcomes at the basin-level. Each spreadsheet includes a copy of the codebook used in analyzing the data. This data project also includes 6 documentation files: a GIS metadata workbook, an interview catalog, an interview consent form, a redaction protocol, this data narrative, and an administrative README file.</p> <h3>Data Overview</h3> <p>The research involved a mixed-methods approach that combines information on agencies; the physical, social, and institutional characteristics of groundwater basins and the agencies located within them; formal filings; agreements; and plans developed by agencies; meeting minutes; interview data; and data from participant observation.</p>

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Qualitative Data Repository
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Qualitative Data Repository
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Majid Sadeqzadeh; Ali Ghannadzadeh;

    Ammonia production through more efficient technologies can be achieved using exergy analysis. Ammonia production is one of the most important but also one of most energy consuming processes in the chemical industry. Based on a panel of solutions previously developed, this study helps to identify potential areas of improvement using an exergy analysis that covers all aspects of conventional ammonia synthesis and separation. The total internal and external exergy losses are calculated as 3,152 and 6,364 kJ/kg, respectively. The process is then divided into five main functional blocks based on their exergy losses. The reforming block contains the largest exergy loss (3,098 kJ/kg) and thus the largest potential for improvement including preheating cold feed through an economizer, developing technology towards isobaric mixing, and pressure drop reduction in the secondary reformer as the main contributors to the irreversibility (1,302 kJ/kg) in this block. The second largest exergy loss resides in the ammonia synthesis block (3,075 kJ/kg) where solutions such as reduced temperature rise across the compressor, proper compressor isolation, reducing undesired components such as argon in the reactor feed, and using lower temperatures for reactor outlet streams, are proposed to decrease the exergy losses. Throttling process in the syngas separator is the key contributing mechanism for the irreversibility (1,635 kJ/kg exergy losses) in the gas upgrading block. The exergy losses in the residual ammonia removal block (833 kJ/kg exergy losses) are mainly due to the stripper and the absorber column where a modified column design might be helpful. The highest exergy loss in the preheating block belongs to the compressors (518 kJ/kg exergy losses) where a lower inlet temperature and better system isolation could help to reduce losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahmed Debez; Maria Adelaide Iannelli; Naceur Jedidi; Abdelbasset Lakhdar; +2 Authors

    AbstractBACKGROUND: Inappropriate utilisation of biosolids may adversely impact agrosystem productivity. Here, we address the response of wheat (Triticum durum) to different doses (0, 40, 100, 200 and 300 t ha−1) of either municipal solid waste (MSW) compost or sewage sludge in a greenhouse pot experiment. Plant growth, heavy metal uptake, and antioxidant activity were considered.RESULTS: Biomass production of treated plants was significantly enhanced at 40 t ha−1 and 100 t ha−1 of MSW compost (+48% and +78% relative to the control, respectively). At the same doses of sewage sludge, the increase was only 18%. Higher doses of both biosolids restricted significantly the plant growth, in concomitance with the significant accumulation of heavy metals (Ni2+, Pb2+, Cu2+ and Zn2+), especially in leaves. Leaf activities of antioxidant enzymes (ascorbate peroxidase, glutathione reductase, catalase and superoxide dismutase) were unchanged at 40 t ha−1 MSW compost or sewage sludge, but were significantly stimulated at higher doses (200–300 t ha−1), together with higher leaf concentration of reduced glutathione.CONCLUSION: This preliminary study suggests that a MSW supply at moderate doses (100 t ha−1) could be highly beneficial for wheat productivity. Copyright © 2010 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hejnfelt, Anette; Angelidaki, Irini;

    Abstract Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 °C and for some experiments also at 37 °C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm 3 kg −1 respectively, corresponding to 50–100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm −3 and 7 g N dm −3 respectively. Pretreatment (pasteurization: 70 °C, sterilization: 133 °C, and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 °C showed 40% higher methane production compared to digestion of manure alone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research at ASB
    Article . 2009
    Data sources: Research at ASB
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    245
    citations245
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research at ASB
      Article . 2009
      Data sources: Research at ASB
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reay, David; Law, Richard; Kew, Peter; Mustaffar, Ahmad;

    This deliverable reports on the main characteristics of the thermal store design, collecting information from previous deliverables in order to define the sensors��� location. In addition, it reports on the integration of the system with the ASTEP components, and some simulations have been done using the UPCT model to verify that the demand of both end users is satisfied. This has covered summer and winter periods and both charging and discharging of the stores.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2022
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2022
    Data sources: Datacite
    ZENODO
    Other literature type . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility20
    visibilityviews20
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2022
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2022
      Data sources: Datacite
      ZENODO
      Other literature type . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hartmut Spliethoff; Ioana Ionel; Viorica Cebrucean; Dumitru Cebrucean;

    In this paper, the performances of two iron-based syngas-fueled chemical looping (SCL) systems for hydrogen (H2) and electricity production, with carbon dioxide (CO2) capture, using different reactor configurations were evaluated and compared. The first investigated system was based on a moving bed reactor configuration (SCL-MB) while the second used a fluidized bed reactor configuration (SCL-FB). Two modes of operation of the SCL systems were considered, namely, the H2 production mode, when H2 was the desired product from the system, and the combustion mode, when only electricity was produced. The SCL systems were modeled and simulated using Aspen Plus software. The results showed that the SCL system based on a moving bed reactor configuration is more efficient than the looping system with a fluidized bed reactor configuration. The H2 production efficiency of the SCL-MB system was 11 % points higher than that achieved in the SCL-FB system (55.1 % compared to 44.0 %). When configured to produce only electricity, the net electrical efficiency of the SCL-MB system was 1.4 % points higher than that of the SCL-FB system (39.9 % compared to 38.5 %). Further, the results showed that the two chemical looping systems could achieve >99 % carbon capture efficiency and emit ~2 kg CO2/MWh, which is significantly lower than the emission rate of conventional coal gasification-based plants for H2 and/or electricity generation with CO2 capture.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MediaTUM
    Article . 2019
    Data sources: MediaTUM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      MediaTUM
      Article . 2019
      Data sources: MediaTUM
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,988 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hedberg, Per; Sundquist, Göran;

    Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a ´Youth team´, consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone´s opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership. Oskarshamn is one of the municipalities being discussed as a possible site for disposal of nuclear waste from the Swedish nuclear power plants, and there has been inquiries made for a pilot study in the area. In view of this the local council of Oskarshamn appointed a 'Youth team', consisting of ten young politicians from all political parties represented in the local council. The aim of the team was to inform and create debate among adolescents about how to store the radioactive waste from nuclear power plants. The purpose of this survey, addressed to young people in Oskarshamn, was to shed light on their opinion towards a pilot study and possible disposal of nuclear waste in Oskarshamn. The respondents had to answer questions about their opinion on the use of nuclear power in Sweden, if they believed nuclear power to be abolished by year 2010, and about their general interest in issues concerning energy and nuclear power. Other questions concerned risks associated with nuclear power, the influence different groups have/ought to have when it comes to disposal of nuclear waste, and if the respondent would accept a decision to dispose nuclear waste in Oskarshamn. A number of questions dealt with the suggested pilot study; if the respondent was for or against a pilot study; who should decide about the pilot study; if there had been enough information about the study; and if the respondent had attended any meeting, signed any petition, contacted any politician, contacted or participated in mass media, or tried to influence anyone's opinion on any issue concerning the pilot study. The respondents also had to state the issues they considered to be important to study in a pilot study. Furthermore the respondents had to give their opinion about a number of risks discussed in connection with disposal of nuclear waste in Oskarshamn. Other questions concerned the influence on job opportunities and tourism. Demographic items include age, gender, marital status, children, education, occupation, and trade union membership.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1998
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1998
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M.M. Almeida; A.A. Más; T.M. Silva; M.F. Montemor;

    Abstract High power pseudocapacitors are extremely relevant to answer specific needs in the current energy transition arena and to implement an efficient renewable energy society. However, literature shows that are still open gaps concerning improvement of their energy density at high power, conversion efficiency, cost and cycle life. Electrodes based on active transition metal compounds, and in particular metal sulphides, evidence high potential to meet these objectives. This work discusses the dependence on the synthesis route of the charge storage mechanism of manganese sulphide-based materials and relates the pseudocapacitive response of these electrodes with their polycrystalline nature. Results reveal that a manganese oxy-sulphide mixture can achieve a high specific capacitance of 231 F.g−1 at 0.5 A/g in a 0.65 V active window. These values represent a 31.5 % increase compared to pure rambergite, γ-MnS, and 436 % compared to pure hausmannite Mn3O4 prepared under the same conditions. Moreover, the results show that manganese oxy-sulphide electrodes are characterized by good charge retention (73%), and superior long term capacity retention (above 86%) after 5000 cycles, evidencing potential for high power energy storage applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrochimica Acta
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrochimica Acta
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ramos Galán, Andrés; Pérez Arriaga, José Ignacio; Bogas Gálvez, Juan;

    Artículos en revistas It is shown how a standard nonlinear programming approach can be applied to solve a sophisticated version of the static optimal mix problem in generation planning. The model presented includes technical minima of thermal capacity, detailed operating models of storage-hydro and pumped-hydro units, a realistic model of capital costs for hydro plants, operating reserve and minimum demand constraints, and capacity already in existence. The model formulation is in a format that can be directly handled by the well-known MINOS code and can be efficiently solved. The use of a general-purpose nonlinear optimization program results in a great flexibility, making it possible to modify the model formulation easily or to adapt it to the characteristics of a particular electric system. A realistic application to the Spanish generation system is presented info:eu-repo/semantics/publishedVersion

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Systems
    Article . 1989 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Power Engineering Review
    Article . 1989 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Systems
      Article . 1989 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Power Engineering Review
      Article . 1989 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Holmberg, Sören; Branzén, Karl; Westerståhl, Jörgen;

    I studiet av kärnkraftsfrågan i valet 1976 ingår två undersökningar, dels en intervjuundersökning av väljarna - Väljarna och kärnkraften - dels föreliggande undersökning som är en innehållsanalys av energidebatten i massmedia. Datainsamlingen innefattar en systematisk genomgång av 20 dagstidningar under fem veckor hösten 1976. Totalt registrerades 2807 ledare, nyhetsartiklar, insändare, annonser, krönikor m.m. som innehöll stoff kring kärnkraften eller energiproblemen i allmänhet. Enkätens kvalitet har prövats - bortfallens jämnhet mot tillgängliga registerdata och föregående enkäters karakteristika, svarens inbördes logik och fullständighet. Statistisk vägning har utförts för mindre över- och underrepresentation av befolkningsgrupper i ett 48-cellersmönster. This study was conducted in connection with the 1976 election study in order to study how the question of nuclear power has been handled by the press. Twenty daily newspapers were analysed during five weeks in the autumn 1976. The papers analysed were chosen after their political preferences in order to represent the different views of the major political parties. The study includes 2807 editorials, articles, advertisements and other materials containing views on the use of nuclear power.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1984
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Swedish National Data Service
    Dataset . 1984
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Swedish National Dat...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1984
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Swedish National Data Service
      Dataset . 1984
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Milman, Anita;

    <h3>Project Overview</h3> <p>Jurisdictional boundaries of governmental agencies often do not align with the geographic or social boundaries of the policy issues they are tasked with addressing. This spatial mismatch is especially common in relation to natural resources and the environment. Where it occurs, achievement of policy goals may require coordination across jurisdictions, which can lead to mutual benefits. Yet, governmental agencies may view coordination as costly or as leading to a loss of autonomy. This project examined coordination decisions made by local level governmental agencies in California, as they formed Groundwater Sustainability Agencies (GSAs) and subsequently coordinated development of their first groundwater sustainability plans (GSPs) under California's Sustainable Groundwater Management Act (SGMA). The project addresses the question of how agencies make decisions and manage interactions when under a coordination mandate that allots agencies the discretion to decide how to coordinate. More specifically, it investigates:<ol><li>What factors influence decisions regarding the geographic extent of and parties involved in development of new formal agencies for groundwater management,</li><li>How do concerns about the potential risks of coordination affect the choice of coordination mechanisms,</li><li>How does the structure of agency interactions affect their achievement of the objectives of the coordination mandate, and</li><li>How do agencies make sense of a coordination mandate and how does that sense-making process influence the decisions agencies make when deciding how to respond to the mandate?</li></ol></p> <h3>Data Collection Overview</h3> <p>Data were collected between January 2018 and May 2020. The methods for data collection varied by data type.<ul><li>Secondary data on the physical, social, and institutional characteristics of groundwater basins were collected from California Department of Water Resources datasets, the American Community Survey, and the National Land Use Database.</li><li>Data on GSA formation and copies of GSPs and Coordination Agreements were obtained from the California’s SGMA Portal Website (https://sgma.water.ca.gov/portal/)</li><li>Meeting minutes and other documentation were obtained from the respective websites of local-level agencies that formed GSAs.</li><li>Interviews were conducted with representatives from 67 groundwater sustainability agencies. Interviewees spanned 17 of the 19 basins and 38 of the 44 groundwater sustainability plans produced. Interviewees were identified based on formal GSA contact information and selected based on formal notices to produce a GSP. Recruitment sought to interview representatives from least one GSA from each GSP group.</li><li>Participant observation was undertaken of more than 58 public meetings (in person, virtually, or reviewing recordings).</li></ul></p> <h3>Shared Data Organization</h3> <p>The shared data is organized into three folders. A GIS folder contains 16 relevant data files. An interview transcripts folder contains 52 de-identified transcripts from the interviews that were recorded and transcribed. Some interviewees did not agree to recording and transcription of the interviews, thus data from those interviews are not available. A tabular data folder contains 3 spreadsheet workbooks. These include a spreadsheet documenting coordination concerns at the basin-level; a spreadsheet documenting organizational forms and institutions adopted at the basin-level; and a spreadsheet documenting coordination outcomes at the basin-level. Each spreadsheet includes a copy of the codebook used in analyzing the data. This data project also includes 6 documentation files: a GIS metadata workbook, an interview catalog, an interview consent form, a redaction protocol, this data narrative, and an administrative README file.</p> <h3>Data Overview</h3> <p>The research involved a mixed-methods approach that combines information on agencies; the physical, social, and institutional characteristics of groundwater basins and the agencies located within them; formal filings; agreements; and plans developed by agencies; meeting minutes; interview data; and data from participant observation.</p>

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Qualitative Data Repository
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Qualitative Data Rep...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Qualitative Data Repository
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Majid Sadeqzadeh; Ali Ghannadzadeh;

    Ammonia production through more efficient technologies can be achieved using exergy analysis. Ammonia production is one of the most important but also one of most energy consuming processes in the chemical industry. Based on a panel of solutions previously developed, this study helps to identify potential areas of improvement using an exergy analysis that covers all aspects of conventional ammonia synthesis and separation. The total internal and external exergy losses are calculated as 3,152 and 6,364 kJ/kg, respectively. The process is then divided into five main functional blocks based on their exergy losses. The reforming block contains the largest exergy loss (3,098 kJ/kg) and thus the largest potential for improvement including preheating cold feed through an economizer, developing technology towards isobaric mixing, and pressure drop reduction in the secondary reformer as the main contributors to the irreversibility (1,302 kJ/kg) in this block. The second largest exergy loss resides in the ammonia synthesis block (3,075 kJ/kg) where solutions such as reduced temperature rise across the compressor, proper compressor isolation, reducing undesired components such as argon in the reactor feed, and using lower temperatures for reactor outlet streams, are proposed to decrease the exergy losses. Throttling process in the syngas separator is the key contributing mechanism for the irreversibility (1,635 kJ/kg exergy losses) in the gas upgrading block. The exergy losses in the residual ammonia removal block (833 kJ/kg exergy losses) are mainly due to the stripper and the absorber column where a modified column design might be helpful. The highest exergy loss in the preheating block belongs to the compressors (518 kJ/kg exergy losses) where a lower inlet temperature and better system isolation could help to reduce losses.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ahmed Debez; Maria Adelaide Iannelli; Naceur Jedidi; Abdelbasset Lakhdar; +2 Authors

    AbstractBACKGROUND: Inappropriate utilisation of biosolids may adversely impact agrosystem productivity. Here, we address the response of wheat (Triticum durum) to different doses (0, 40, 100, 200 and 300 t ha−1) of either municipal solid waste (MSW) compost or sewage sludge in a greenhouse pot experiment. Plant growth, heavy metal uptake, and antioxidant activity were considered.RESULTS: Biomass production of treated plants was significantly enhanced at 40 t ha−1 and 100 t ha−1 of MSW compost (+48% and +78% relative to the control, respectively). At the same doses of sewage sludge, the increase was only 18%. Higher doses of both biosolids restricted significantly the plant growth, in concomitance with the significant accumulation of heavy metals (Ni2+, Pb2+, Cu2+ and Zn2+), especially in leaves. Leaf activities of antioxidant enzymes (ascorbate peroxidase, glutathione reductase, catalase and superoxide dismutase) were unchanged at 40 t ha−1 MSW compost or sewage sludge, but were significantly stimulated at higher doses (200–300 t ha−1), together with higher leaf concentration of reduced glutathione.CONCLUSION: This preliminary study suggests that a MSW supply at moderate doses (100 t ha−1) could be highly beneficial for wheat productivity. Copyright © 2010 Society of Chemical Industry

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2010
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Science of Food and Agriculture
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    49
    citations49
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2010
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of the Science of Food and Agriculture
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hejnfelt, Anette; Angelidaki, Irini;

    Abstract Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 °C and for some experiments also at 37 °C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm 3 kg −1 respectively, corresponding to 50–100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm −3 and 7 g N dm −3 respectively. Pretreatment (pasteurization: 70 °C, sterilization: 133 °C, and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 °C showed 40% higher methane production compared to digestion of manure alone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research at ASB
    Article . 2009
    Data sources: Research at ASB
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2009 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    245
    citations245
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research at ASBarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research at ASB
      Article . 2009
      Data sources: Research at ASB
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2009 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reay, David; Law, Richard; Kew, Peter; Mustaffar, Ahmad;

    This deliverable reports on the main characteristics of the thermal store design, collecting information from previous deliverables in order to define the sensors��� location. In addition, it reports on the integration of the system with the ASTEP components, and some simulations have been done using the UPCT model to verify that the demand of both end users is satisfied. This has covered summer and winter periods and both charging and discharging of the stores.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2022
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2022
    Data sources: Datacite
    ZENODO
    Other literature type . 2022
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility20
    visibilityviews20
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2022
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2022
      Data sources: Datacite
      ZENODO
      Other literature type . 2022
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hartmut Spliethoff; Ioana Ionel; Viorica Cebrucean; Dumitru Cebrucean;

    In this paper, the performances of two iron-based syngas-fueled chemical looping (SCL) systems for hydrogen (H2) and electricity production, with carbon dioxide (CO2) capture, using different reactor configurations were evaluated and compared. The first investigated system was based on a moving bed reactor configuration (SCL-MB) while the second used a fluidized bed reactor configuration (SCL-FB). Two modes of operation of the SCL systems were considered, namely, the H2 production mode, when H2 was the desired product from the system, and the combustion mode, when only electricity was produced. The SCL systems were modeled and simulated using Aspen Plus software. The results showed that the SCL system based on a moving bed reactor configuration is more efficient than the looping system with a fluidized bed reactor configuration. The H2 production efficiency of the SCL-MB system was 11 % points higher than that achieved in the SCL-FB system (55.1 % compared to 44.0 %). When configured to produce only electricity, the net electrical efficiency of the SCL-MB system was 1.4 % points higher than that of the SCL-FB system (39.9 % compared to 38.5 %). Further, the results showed that the two chemical looping systems could achieve >99 % carbon capture efficiency and emit ~2 kg CO2/MWh, which is significantly lower than the emission rate of conventional coal gasification-based plants for H2 and/or electricity generation with CO2 capture.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    MediaTUM
    Article . 2019
    Data sources: MediaTUM
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MediaTUMarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      MediaTUM
      Article . 2019
      Data sources: MediaTUM
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.