- home
- Search
- Energy Research
- 15. Life on land
- PANGAEA
- Energy Research
- 15. Life on land
- PANGAEA
Research data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Fischer, Andrea; Fickert, Thomas; Schwaizer, Gabriele; Patzelt, Gernot; Groß, Günther;Monitoring of plant succession in glacier forelands so far has been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner/Silvretta (ferner is a Tyrolian toponym for glacier) is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985-2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images and used for site age determination. We sampled plots of different time since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover did not increase essentially thereafter. Species number increases from 10-20 species on young sites to 40-50 species after 100 years. The NDVI increases for all plots between 1985 and 2016, from a mean of 0.11 for 1985-1991 to 0.2 in 2009 and 0.27 in 2016. For the plots deglaciated between 1 and about 150 years, the NDVI increases with the time of exposure. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) - even for sparsely vegetated areas -, we see a high potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management related applications. This data collection comprises the galcier outlines, NDVIs and chronosequencing locations with diversity and ground cover data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hysa, Artan;The data shared in this package delivers the wildfire ignition probability and spreading capacity of vegetated surfaces in Romania following the method developed by Hysa and Baskaya (2019, https://doi.org/10.1007/s40808-018-0519-9). The model relies on remotely sensed free data that covers the time-lapse between 2015-2020. Geospatial information about sixteen criteria about anthropogenic, hydro-meteorological, geophysical, and fuel properties of Romanian territory are considered here. Raw data regarding each criterion is acquired for free from different online databases. The attribute table of the shared shapefile includes all inventory measurements per each criterion. It consist of 70410 point geometries in total representing 1km2 each, covering all vegetated surfaces of Romania. This data consist of a geospatial points layer (shp file), which deliver both the multi-criteria inventory records and the calculated wildfire ignition probability and wildfire spreading capacity (WIPI/WSCI) of the Romanian vegetated surfaces. The distance between points is 1km. The file consists of 70410 points in total, that overlap with the vegetated surfaces as derived from CORINE Land Cover data of 2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Moreira-Saporiti, Agustín; Teichberg, Mirta;We studied if functional traits related to resource preemption (light and inorganic nutrients) exert control on space preemption of tropical seagrass meadows. Additionally, we studied if space preemption changed under different eutrophication scenarios. We took seagrass abundance data to study space preemption, seagrass traits data to study their effect on space preemption and eutrophication indicators to evaluate the level of eutrophication at each site/sampling event. The data was collected in Unguja Island (Zanzibar Archipealgo, Tanzania) in seven sites/sampling events (Harbor, Chapwani, Changuu, Bweleo, Fumba, Mangroves and Marumbi). Each site/sampling event comprised a subtidal seagrass meadow (2-4 meters depth) of around 2500 square meters, delimited by the coastline and a fringing reef. The data was taken between the 26.09.2016 to the 05.10.2016. In each site/sampling event, five 50 meters transects were deployed perpendicular to the coast and paralel to each other, approximately separated by 50 meters. The areas enclosed beweeen the transects were names A, B, C and D. Macroalgae biomass was collected as an indicator of eutrophication. Macroalgae biomass was quantified along five 50-m transects per site/sampling event, set perpendicular to the coast and parallel to each other, separated by ~50 meters. We collected the macroalgae present in three random 0.25x0.25 meters quadrats per transect. The macroalgae samples were cleaned of sediments and rinsed with water. They were then dried at 50°C in a forced air oven until constant dry weight. The macroalgae biomass was calculated as the grams of dry weight divided by the area of the quadrat (grams of dry weight per square meter).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Authors: Jiang, Hou; Lu, Ning;Surface solar radiation drives the water cycle and energy exchange on the earth's surface, and its diffuse component can promote carbon uptake in ecosystems by increasing the plant productivity. The accurate knowledge of their spatial distribution is of great importance to many studies and applications, such as the estimation of agricultural yield, carbon dynamics of terrestrial systems, site selection of solar power plants, as well as trends of regional climate changes. Therefore, we produce the hourly surface radiation datasets based on the hourly Multi-functional Transport Satellite (MTSAT) satellite imagery and the ground observations from the China Meteorology Administration (CMA) through deep learning techniques. The deep network is trained using training samples in 2008, and then utilized to generate the hourly radiation for other years. This dataset provides the gridded surface global and diffuse solar radiation in 2015 within 71.025°E - 141.025°E and 14.975°N - 59.975°N with an increment of 0.05°. Both the direct predicted hourly values and the integrated daily and monthly total values are available. The dataset should be useful for the analysis of the regional differences and temporal cycles of solar radiation in fine scales, and the impact of diffuse radiation on plant growth etc.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Meyer, Hanna; Katurji, Marwan; Detsch, Florian; Morgan, Fraser; Nauss, Thomas; Roudier, Pierre; Zawar-Reza, Peyman;AntAir is a dataset of gridded air temperatures in 1km spatial and daily temporal resolution currently available for the years 2003-2016. AntAir was created by modelling daily air temperature from MODIS land surface temperature using machine learning algorithms. Data from 70 weather stations was used as a reference. The dataset covers the entire continent of Antarctica in 1km spatial resolution for the period 2003 to 2016. Each year consists of 365 raster layers that represent the predicted air temperature for the respective day. The raster layers are distributed using the GeoTIFF format and the Antarctic Polar Stereographic projection (EPSG 3031). The unit of the values is degree Celsius * 10. Clouded areas where no air temperature predictions could be made for are marked as no data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Authors: Birami, Benjamin; Bamberger, Ines; Gast, Andreas; Ruehr, Nadine K;The data describes plant gas exchange dynamics (CO2, H2O) together with online proton transfer reaction mass spectrometry measurements of biogenic volatile organic compound emissions of Pinus halepensis seedlings exposed to two similar heatwaves together with drought and a recovery period. Measured in a scientific glasshouse facility at KIT IMK-IFU Garmisch-Partenkirchen, Germany, via an automated chamber setup. #0 means "Inf"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:AKA | Topoclimate, land surface..., EC | PETA-CARBAKA| Topoclimate, land surface conditions and atmospheric feedbacks ,EC| PETA-CARBKarjalainen, Olli; Luoto, Miska; Aalto, Juha; Etzelmüller, Bernd; Grosse, Guido; Jones, Benjamin M; Lilleøren, Karianne Staalesen; Hjort, Jan;This dataset contains spatial predictions of the potential environmental spaces for pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere permafrost areas. The potential environmental spaces, i.e. conditions where climate, topography and soil properties are suitable for landform presence, were predicted with statistical ensemble modelling employing geospatial data on environmental conditions at 30 arc-second resolution (~1 km). In addition to the baseline period (1950-2000), the predictions are provided for 2041-2060 and 2061-2080 using climate-forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). The resulting dataset consists of five spatial predictions for each landform in GeoTIFF format.The data provide new information on 1) the fine-scale spatial distribution of permafrost landforms in the Northern Hemisphere, 2) the potential future alterations in the environmental suitability for permafrost landforms due to climate change, and 3) the circumpolar distribution of various ground ice types, and can 4) facilitate efforts to inventory permafrost landforms in incompletely mapped areas.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Authors: Grüner, Esther; Wachendorf, Michael; Astor, Thomas;Multispectral data from two legume-grass mixtures (clover- and lucerne-grass) were collected in the year 2018 for aboveground biomass and nitrogen fixation (NFix) estimation. In addition to the mixtures, pure stands of legumes and of grasses of the two mixtures were sown in order to represent variable conditions in practical farming (0-100% legumes). All six treatments were cultivated in four replicates and harvested three times within the year (plot size: 1.5 x 12 m). Destructive biomass samples for fresh (FM) and dry matter (DM) and NFix determination were taken three times at harvest. To cover the entire vegetation season, sub-sampling for DM and FM was done five times between the harvests. Flight missions were carried out one day before each of the eight sampling dates. A multispectral sensor (Parrot Sequoia, MicaSense Inc, Seattle, USA) with four spectral bands (green, red, red edge, near infrared) was mounted on a low-cost unmanned aerial vehicle (UAV; DJI Phantom 3, Advanced, Shenzhen, China). Eight black and white ground control points (GCPs) were distributed in the pathways. Coordinates of the plot corners and GCPs were measured by a Leica real time kinematic global navigation satellite system (Leica RTK GNSS). Orthomosaics were created by the overlapping images with a photogrammetric processing software (Agisoft PhotoScan Professional, Agisoft LLC, St. Petersburg, Russia). The orthomosaics were georeferenced using the coordinates of the GCPs. The mean reflectance value of the four bands was extracted by zonal statistics in QGIS (Quantum Geografic Infromation System) using the four plot corners of each plot as boundaries. Furthermore, eight texture features of every band were calculated, provided by the processing tool HaralickTextureExtraction of the Orfeo Toolbox library (OTB) in QGIS.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.914667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.914667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Fischer, Andrea; Fickert, Thomas; Schwaizer, Gabriele; Patzelt, Gernot; Groß, Günther;Monitoring of plant succession in glacier forelands so far has been restricted to field sampling. In this study, in situ vegetation sampling along a chronosequence between Little Ice Age (LIA) maximum extent and the recent glacier terminus at Jamtalferner/Silvretta (ferner is a Tyrolian toponym for glacier) is compared to time series of the Normalized Difference Vegetation Index (NDVI) calculated from 13 Landsat scenes (1985-2016). The glacier terminus positions at 16 dates between the LIA maximum and 2015 were analysed from historical maps, orthophotos and LiDAR images and used for site age determination. We sampled plots of different time since deglaciation, from very recent to approx. 150 years: after 100 years, roughly 80% of the ground is covered by plants and ground cover did not increase essentially thereafter. Species number increases from 10-20 species on young sites to 40-50 species after 100 years. The NDVI increases for all plots between 1985 and 2016, from a mean of 0.11 for 1985-1991 to 0.2 in 2009 and 0.27 in 2016. For the plots deglaciated between 1 and about 150 years, the NDVI increases with the time of exposure. As the increase in ground cover is clearly reproduced by the NDVI (R² ground cover/NDVI 0.84) - even for sparsely vegetated areas -, we see a high potential of satellite-borne NDVI to perform regional characterizations of glacier forelands for hydrological, ecological and hazard management related applications. This data collection comprises the galcier outlines, NDVIs and chronosequencing locations with diversity and ground cover data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902545&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Hysa, Artan;The data shared in this package delivers the wildfire ignition probability and spreading capacity of vegetated surfaces in Romania following the method developed by Hysa and Baskaya (2019, https://doi.org/10.1007/s40808-018-0519-9). The model relies on remotely sensed free data that covers the time-lapse between 2015-2020. Geospatial information about sixteen criteria about anthropogenic, hydro-meteorological, geophysical, and fuel properties of Romanian territory are considered here. Raw data regarding each criterion is acquired for free from different online databases. The attribute table of the shared shapefile includes all inventory measurements per each criterion. It consist of 70410 point geometries in total representing 1km2 each, covering all vegetated surfaces of Romania. This data consist of a geospatial points layer (shp file), which deliver both the multi-criteria inventory records and the calculated wildfire ignition probability and wildfire spreading capacity (WIPI/WSCI) of the Romanian vegetated surfaces. The distance between points is 1km. The file consists of 70410 points in total, that overlap with the vegetated surfaces as derived from CORINE Land Cover data of 2018.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Moreira-Saporiti, Agustín; Teichberg, Mirta;We studied if functional traits related to resource preemption (light and inorganic nutrients) exert control on space preemption of tropical seagrass meadows. Additionally, we studied if space preemption changed under different eutrophication scenarios. We took seagrass abundance data to study space preemption, seagrass traits data to study their effect on space preemption and eutrophication indicators to evaluate the level of eutrophication at each site/sampling event. The data was collected in Unguja Island (Zanzibar Archipealgo, Tanzania) in seven sites/sampling events (Harbor, Chapwani, Changuu, Bweleo, Fumba, Mangroves and Marumbi). Each site/sampling event comprised a subtidal seagrass meadow (2-4 meters depth) of around 2500 square meters, delimited by the coastline and a fringing reef. The data was taken between the 26.09.2016 to the 05.10.2016. In each site/sampling event, five 50 meters transects were deployed perpendicular to the coast and paralel to each other, approximately separated by 50 meters. The areas enclosed beweeen the transects were names A, B, C and D. Macroalgae biomass was collected as an indicator of eutrophication. Macroalgae biomass was quantified along five 50-m transects per site/sampling event, set perpendicular to the coast and parallel to each other, separated by ~50 meters. We collected the macroalgae present in three random 0.25x0.25 meters quadrats per transect. The macroalgae samples were cleaned of sediments and rinsed with water. They were then dried at 50°C in a forced air oven until constant dry weight. The macroalgae biomass was calculated as the grams of dry weight divided by the area of the quadrat (grams of dry weight per square meter).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Authors: Jiang, Hou; Lu, Ning;Surface solar radiation drives the water cycle and energy exchange on the earth's surface, and its diffuse component can promote carbon uptake in ecosystems by increasing the plant productivity. The accurate knowledge of their spatial distribution is of great importance to many studies and applications, such as the estimation of agricultural yield, carbon dynamics of terrestrial systems, site selection of solar power plants, as well as trends of regional climate changes. Therefore, we produce the hourly surface radiation datasets based on the hourly Multi-functional Transport Satellite (MTSAT) satellite imagery and the ground observations from the China Meteorology Administration (CMA) through deep learning techniques. The deep network is trained using training samples in 2008, and then utilized to generate the hourly radiation for other years. This dataset provides the gridded surface global and diffuse solar radiation in 2015 within 71.025°E - 141.025°E and 14.975°N - 59.975°N with an increment of 0.05°. Both the direct predicted hourly values and the integrated daily and monthly total values are available. The dataset should be useful for the analysis of the regional differences and temporal cycles of solar radiation in fine scales, and the impact of diffuse radiation on plant growth etc.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BY NC SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.907380&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Zweifel, Roman; Sterck, Frank J; Braun, Sabine; Buchmann, Nina; Eugster, Werner; Gessler, Arthur; Haeni, Matthias; Peters, Richard L; Walthert, Lorenz; Wilhelm, Micah; Ziemínska, Kasia; Etzold, Sophia;The timing of diel stem growth of mature forest trees is still largely unknown, as empirical data with high temporal resolution have not been available so far. Consequently, the effects of day-night conditions on tree growth remained uncertain. Here we present the first comprehensive field study of hourly-resolved radial stem growth of seven temperate tree species, based on 57 million underlying data points over a period of up to 8 years. We show that trees grow mainly at night, with a peak after midnight, when the vapour pressure deficit (VPD) is among the lowest. A high VPD strictly limits radial stem growth and allows little growth during daylight hours, except in the early morning. Surprisingly, trees also grow in moderately dry soil when the VPD is low. Species-specific differences in diel growth dynamics show that species able to grow earlier during the night are associated with the highest number of hours with growth per year and the largest annual growth increment. We conclude that species with the ability to overcome daily water deficits faster have greater growth potential. Furthermore, we conclude that growth is more sensitive than carbon uptake to dry air, as growth stops before stomata are known to close.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.935398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:PANGAEA Meyer, Hanna; Katurji, Marwan; Detsch, Florian; Morgan, Fraser; Nauss, Thomas; Roudier, Pierre; Zawar-Reza, Peyman;AntAir is a dataset of gridded air temperatures in 1km spatial and daily temporal resolution currently available for the years 2003-2016. AntAir was created by modelling daily air temperature from MODIS land surface temperature using machine learning algorithms. Data from 70 weather stations was used as a reference. The dataset covers the entire continent of Antarctica in 1km spatial resolution for the period 2003 to 2016. Each year consists of 365 raster layers that represent the predicted air temperature for the respective day. The raster layers are distributed using the GeoTIFF format and the Antarctic Polar Stereographic projection (EPSG 3031). The unit of the values is degree Celsius * 10. Clouded areas where no air temperature predictions could be made for are marked as no data.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.902166&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Authors: Birami, Benjamin; Bamberger, Ines; Gast, Andreas; Ruehr, Nadine K;The data describes plant gas exchange dynamics (CO2, H2O) together with online proton transfer reaction mass spectrometry measurements of biogenic volatile organic compound emissions of Pinus halepensis seedlings exposed to two similar heatwaves together with drought and a recovery period. Measured in a scientific glasshouse facility at KIT IMK-IFU Garmisch-Partenkirchen, Germany, via an automated chamber setup. #0 means "Inf"
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.923768&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Funded by:AKA | Topoclimate, land surface..., EC | PETA-CARBAKA| Topoclimate, land surface conditions and atmospheric feedbacks ,EC| PETA-CARBKarjalainen, Olli; Luoto, Miska; Aalto, Juha; Etzelmüller, Bernd; Grosse, Guido; Jones, Benjamin M; Lilleøren, Karianne Staalesen; Hjort, Jan;This dataset contains spatial predictions of the potential environmental spaces for pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere permafrost areas. The potential environmental spaces, i.e. conditions where climate, topography and soil properties are suitable for landform presence, were predicted with statistical ensemble modelling employing geospatial data on environmental conditions at 30 arc-second resolution (~1 km). In addition to the baseline period (1950-2000), the predictions are provided for 2041-2060 and 2061-2080 using climate-forcing scenarios (Representative Concentration Pathways 4.5 and 8.5). The resulting dataset consists of five spatial predictions for each landform in GeoTIFF format.The data provide new information on 1) the fine-scale spatial distribution of permafrost landforms in the Northern Hemisphere, 2) the potential future alterations in the environmental suitability for permafrost landforms due to climate change, and 3) the circumpolar distribution of various ground ice types, and can 4) facilitate efforts to inventory permafrost landforms in incompletely mapped areas.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.922771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Authors: Grüner, Esther; Wachendorf, Michael; Astor, Thomas;Multispectral data from two legume-grass mixtures (clover- and lucerne-grass) were collected in the year 2018 for aboveground biomass and nitrogen fixation (NFix) estimation. In addition to the mixtures, pure stands of legumes and of grasses of the two mixtures were sown in order to represent variable conditions in practical farming (0-100% legumes). All six treatments were cultivated in four replicates and harvested three times within the year (plot size: 1.5 x 12 m). Destructive biomass samples for fresh (FM) and dry matter (DM) and NFix determination were taken three times at harvest. To cover the entire vegetation season, sub-sampling for DM and FM was done five times between the harvests. Flight missions were carried out one day before each of the eight sampling dates. A multispectral sensor (Parrot Sequoia, MicaSense Inc, Seattle, USA) with four spectral bands (green, red, red edge, near infrared) was mounted on a low-cost unmanned aerial vehicle (UAV; DJI Phantom 3, Advanced, Shenzhen, China). Eight black and white ground control points (GCPs) were distributed in the pathways. Coordinates of the plot corners and GCPs were measured by a Leica real time kinematic global navigation satellite system (Leica RTK GNSS). Orthomosaics were created by the overlapping images with a photogrammetric processing software (Agisoft PhotoScan Professional, Agisoft LLC, St. Petersburg, Russia). The orthomosaics were georeferenced using the coordinates of the GCPs. The mean reflectance value of the four bands was extracted by zonal statistics in QGIS (Quantum Geografic Infromation System) using the four plot corners of each plot as boundaries. Furthermore, eight texture features of every band were calculated, provided by the processing tool HaralickTextureExtraction of the Orfeo Toolbox library (OTB) in QGIS.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.914667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2020License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.914667&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu