search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,868 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • 7. Clean energy
  • 6. Clean water
  • 3. Good health
  • English

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eslamdoust, Jamshid;

    Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; +2 Authors

    The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sathre, Roger; Gustavsson, Leif;

    Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Swedish National Dat...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Swedish National Data Service
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Swedish National Data Service
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Swedish National Dat...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Swedish National Data Service
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Swedish National Data Service
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Vasconcelos, Miguel; Vasconcelos, Miguel; Cordeiro, Daniel; Da Costa, Georges; +3 Authors

    L'empreinte carbone des technologies numériques est une préoccupation depuis plusieurs années. Cela concerne principalement la consommation électrique des datacenters; beaucoup de fournisseurs dans le domaine du cloud s'engagent à n'utiliser que des sources d'énergie renouvelables. Cependant, cette approche néglige la phase de fabrication des composants des infrastructures numériques. Nous considérons dans ce travail de recherche la question du dimensionnement des énergies renouvelables pour une infrastructure de type cloud géographiquement distribuée autour de la planète, considérant l'impact carbone à la fois de l'électricité issue du réseau électrique local en fonction de la location de sa production, et de la fabrication des panneaux photovoltaïques et des batteries pour la part renouvelable de l'alimentation des ressources. Nous avons modélisé ce problème de minimisation de l'impact carbone d'une telle infrastructure cloud sous la forme d'un programme linéaire. La solution est le dimensionnement optimal d'une fédération de cloud sur une année complète en fonction des localisations des datacenters, des traces réelles des travaux à exécuter et valeurs d'irradiation solaire heure par heure. Nos résultats montrent une réduction de l'impact carbone de 30% comparés à la même architecture cloud totalement alimentée par des énergies renouvelables et 85% comparés à un modèle qui n'utiliserait qu'une alimentation via le réseau local d'électricité. The carbon footprint of IT technologies has been a significant concern in recent years. This concern mainly focuses on the electricity consumption of data centers; many cloud suppliers commit to using 100% of renewable energy sources. However, this approach neglects the impact of device manufacturing. We consider in this work the question of dimensioning the renewable energy sources of a geographically distributed cloud with considering the carbon impact of both the grid electricity consumption in the considered locations and the manufacturing of solar panels and batteries. We design a linear program to optimize cloud dimensioning over one year, considering worldwide locations for data centers, real-life workload traces, and solar irradiation values. Our results show a carbon footprint reduction of about 30% compared to a cloud fully supplied by solar energy and of 85% compared to the 100% grid electricity model. Données computationnelles ou de simulation: En tenant compte des données en entrée (description de la fédération de centres de données, fichiers de configuration appropriés, conditions météorologiques, etc.), le logiciel est capable de proposer un dimensionnement optimal pour la fédération des datacenters à faible émission de carbone distribuée à l'échelle mondiale : surface des panneaux photovoltaïques et capacité des batteries pour chaque datacenter de la fédération. Des scripts sont disponibles pour mettre en forme les solutions proposées. Simulation or computational data: Considering given inputs (datacenter federation, appropriate configuration files, weather conditions, etc.), the software is able to propose an optimal sizing for the globally distributed low carbon cloud federation: surface area of solar panels, battery capacity for each data center location. . Scripts are available to shape the optimal configuration. Audience: Research, Policy maker UpdatePeriodicity: as needed

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kavun, Vitalii; van der Linden, Bart; Canossa, Stefano; Goryachev, Andrey; +5 Authors

    Dataset for the manuscript "Promoting photocatalytic activity of NH2-MIL-125(Ti) for H2 evolution reaction through creation of TiIII and CoI based proton reduction sites".Dataset includes raw N2 sorption data (.aif format), PXRD data of (Co@)NH2-MIL-125(Ti), Co K-edge XANES spectrum of Co foil and transitional XAS (70-1140 usec) and EXAFS data for Co@NH2-MIL-125(Ti), and raw TEM images of the photocatalysts. These data was used for analysis and plotting the figures for the manuscript.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;

    Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility22
    visibilityviews22
    downloaddownloads12
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vuorinen, Tommi A.T.; Veikkolainen, Toni; Taylor, George; Gal, Martin; +3 Authors

    In summer 2020 the energy company St1 carried out its second stimulation of deep geothermal wells in Otaniemi, Espoo, in the Helsinki metropolitan area, southern Finland. Institute of Seismology of University of Helsinki (ISUH) monitored the induced seismicity during the stimulation, and also months before and after it. In the second half of 2022 ISUH consulted the Australian company Institute of Mine Seismology (IMS, https://www.imseismology.org) for providing an automatic phase picking on the ISUH 2020 event and waveform data catalogue (doi:10.23729/cdfd937c-37d5-46b0-9c16-f6e0c10bc81f) using an algorithm based on machine learning (doi: 10.1785/0220210068). The dataset provided by IMS was later transferred to formats used by ISUH. The resulting dataset comprises of phase pickings and relevant waveforms of 85 induced earthquakes that occurred between 8 March 2020 to 8 December, 2020, with local magnitudes between -1.1 and 1.4. Note that the event location and other metadata of the resulting dataset are still based on the ISUH 2020 catalogue in order to preserve the consistency within the dataset as some events did not have enough automatic phase picks for reliable relocation. Waveform, location and timing data have been produced at ISUH using seismic stations of the Finnish National Seismic Network (doi: 10.14470/UR044600) including the Helsinki local broadband network, the temporary HEL broadband network in Helsinki and Espoo, the temporary borehole network of St1 (doi: 10.1785/0220190253), and a pool of lightweight mobile seismic instruments operated by ISUH (GIPP data cubes, doi: 10.5880/GIPP.201925.1; SmartSolos and Refteks, doi: 10.1785/0220210195). The deployment is described in Rintamäki et al., 2021, A Seismic Network to Monitor the 2020 EGS Stimulation in the Espoo/Helsinki Area, Southern Finland, doi:10.1785/0220210195. Event data, event metadata, and station metadata are provided in distinct directories, and for event data, each event is assigned a subdirectory. Data formats follow generally accepted seismological standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fairdata IDA Researc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fairdata IDA Research Data Storage Service
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fairdata IDA Researc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fairdata IDA Research Data Storage Service
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,868 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eslamdoust, Jamshid;

    Plot design and harvesting Twelve sampling plots (16 m × 16 m) in three P. deltoides plantations were established based on systematic random design. To minimize edge effects, surrounding rows were not considered during sampling. The age of the stands was 18-20 years old. In each sampling plot, the DBH (diameter at breast height 1.3 m above the ground) of the individual trees was measured with a caliper in two perpendicular directions and the mean DBH determined. Tree height was measured by Haglöf-Vertex IV hypsometer. Based on the DBH and height measurements, 10 DBH classes from 15 to 42 cm (3 cm intervals) were established. The value of each DBH class represented the central value (i.e., class 15 included all DBH from 12.5 to 17.5 cm). In each DBH class, one representative tree was selected and harvested for a total of 10 P. deltoides trees. Measurements of bark percentagesThe stems of harvested trees were marked and cut into 2 m-segments. The mid-length diameter of each segment was measured outside the bark in two perpendicular directions with a caliper to determine the mean diameter. A 5 cm-thick disc was cut from the middle of each segment. A total of 123 discs were obtained and brought to the laboratory. All the discs were arranged into 2-cm wide diameter classes. The value of each disc class represents the central value (i.e., class 20 included all discs whose diameters ranged from 19.5 to 20.5 cm). Bark was separated from the wood using a peeler knife for each disc. Fresh bark and wood were weighted separately, oven-dried at 80 °C until constant weight, and the oven-dry weight measured. The bark percentage of each disc was considered as bark percentage of a 2 m-segment for fresh and dry weight. Finally, the bark percentage of the whole stem in each DBH class was calculated by adding the 2 m-segments. Bark biomass as an energy source has a high economic value. Bark content variations and production helps recognize the potential of this bioenergy source spatially before harvesting. The percentage of fresh and dry bark in Populus deltoides grown under a monoculture system was examined in the temperate region of northern Iran. Diameter at breast height (DBH) and total height data were analyzed based on an initial inventory. Ten sample trees were felled, separated into 2 m-segments, and weighted in the field. A 5-cm-thick disc from each segment was extracted for determining fresh and dry bark percentages. These were statistically significantly different in disc diameter classes and decreased with increasing disc diameters. Bark percentage of the disc classes ranged from 21.8 to 24.4% in small-sized diameters to 8.1‒9.3% in large-sized diameters. The differences between fresh and dry bark percentages depended on water content variations. Allometric power equations were fitted to data of fresh and dry bark percentages and disc diameters as well as DBH. The values of R2 ranged from 0.89 to 0.90. In addition, allometric power equations provided the best fits for relationships between total stem dry biomass, dry bark biomass, and DBH, R2 = 0.986 and 0.979 for the total stem dry biomass and stem dry bark biomass, respectively. The allometric models can be used to estimate bark percentage and bark production of P. deltoides in segments and for the whole stem for a wide range of segment diameters (8‒44 cm) and DBH (15‒45 cm).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    downloaddownloads5
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • The HEU MODERATE Building Stock Data provides information regarding the building stock for all EU27 member states at the national level (i.e., NUTS 0) considering 2020 as the reference year. Regarding the Service Sector, the data distinguishes the following subsectors: single-family houses, multifamily houses, and apartment blocks. Regarding the Service Sector, the data distinguishes the following subsectors: offices, trade, education, health, hotels and restaurants, and other non-residential buildings. Moreover, for each subsector, the data distinguishes the following construction periods: before 1945, 1945-1969, 1970-1979, 1980-1989, 1990-1999, 2000-2010, and 2011-2020. For each building stock subsector and construction period, the data provide information regarding total values at the national level for: - Number of buildings - Number of dwellings - Number of dwellings according to ownership (i.e., owner occupied, rented, social housing) - Number of dwellings according to occupation (i.e., occupied, vacant, secondary houses) - Total constructed area - Total heated area - Total cooled area - Total final energy consumption for space heating and domestic hot water - Total final energy consumption for space cooling Moreover, the following average values for single building characteristics are provided: - Number of floors - Volume-to-surface ratio - Vertical area - Ground area - Window surface - U-values for the different building elements (roof, walls, windows, and floors) - Useful energy demand (ued) differentiating between space heating, domestic hot water, and space cooling - Final energy consumption (fed) differentiating between space heating, domestic hot water, and space cooling Finally, the data provide information about the prevalence of: - Building materials and methodology for the different building elements (roof, walls, windows, and floors) - Different systems used for space heating, domestic hot water, and space cooling The data is provided as a `csv` file (long format with all details and data source) and as an excel file (wide format with separate sheets for each country). Data and a complete description of the available fields can be found at https://github.com/MODERATE-Project/building-stock-analysis/tree/main/T3.2-static-analysis The dataset was obtained by combining information from European and national resources and the review of scientific literature. Data gaps were subsequently filled via statistical modeling.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; +2 Authors

    The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility30
    visibilityviews30
    downloaddownloads17
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sathre, Roger; Gustavsson, Leif;

    Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Swedish National Dat...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Swedish National Data Service
    Dataset . 2023
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Swedish National Data Service
    Dataset . 2023
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Swedish National Dat...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Swedish National Data Service
      Dataset . 2023
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Swedish National Data Service
      Dataset . 2023
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Vasconcelos, Miguel; Vasconcelos, Miguel; Cordeiro, Daniel; Da Costa, Georges; +3 Authors

    L'empreinte carbone des technologies numériques est une préoccupation depuis plusieurs années. Cela concerne principalement la consommation électrique des datacenters; beaucoup de fournisseurs dans le domaine du cloud s'engagent à n'utiliser que des sources d'énergie renouvelables. Cependant, cette approche néglige la phase de fabrication des composants des infrastructures numériques. Nous considérons dans ce travail de recherche la question du dimensionnement des énergies renouvelables pour une infrastructure de type cloud géographiquement distribuée autour de la planète, considérant l'impact carbone à la fois de l'électricité issue du réseau électrique local en fonction de la location de sa production, et de la fabrication des panneaux photovoltaïques et des batteries pour la part renouvelable de l'alimentation des ressources. Nous avons modélisé ce problème de minimisation de l'impact carbone d'une telle infrastructure cloud sous la forme d'un programme linéaire. La solution est le dimensionnement optimal d'une fédération de cloud sur une année complète en fonction des localisations des datacenters, des traces réelles des travaux à exécuter et valeurs d'irradiation solaire heure par heure. Nos résultats montrent une réduction de l'impact carbone de 30% comparés à la même architecture cloud totalement alimentée par des énergies renouvelables et 85% comparés à un modèle qui n'utiliserait qu'une alimentation via le réseau local d'électricité. The carbon footprint of IT technologies has been a significant concern in recent years. This concern mainly focuses on the electricity consumption of data centers; many cloud suppliers commit to using 100% of renewable energy sources. However, this approach neglects the impact of device manufacturing. We consider in this work the question of dimensioning the renewable energy sources of a geographically distributed cloud with considering the carbon impact of both the grid electricity consumption in the considered locations and the manufacturing of solar panels and batteries. We design a linear program to optimize cloud dimensioning over one year, considering worldwide locations for data centers, real-life workload traces, and solar irradiation values. Our results show a carbon footprint reduction of about 30% compared to a cloud fully supplied by solar energy and of 85% compared to the 100% grid electricity model. Données computationnelles ou de simulation: En tenant compte des données en entrée (description de la fédération de centres de données, fichiers de configuration appropriés, conditions météorologiques, etc.), le logiciel est capable de proposer un dimensionnement optimal pour la fédération des datacenters à faible émission de carbone distribuée à l'échelle mondiale : surface des panneaux photovoltaïques et capacité des batteries pour chaque datacenter de la fédération. Des scripts sont disponibles pour mettre en forme les solutions proposées. Simulation or computational data: Considering given inputs (datacenter federation, appropriate configuration files, weather conditions, etc.), the software is able to propose an optimal sizing for the globally distributed low carbon cloud federation: surface area of solar panels, battery capacity for each data center location. . Scripts are available to shape the optimal configuration. Audience: Research, Policy maker UpdatePeriodicity: as needed

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kavun, Vitalii; van der Linden, Bart; Canossa, Stefano; Goryachev, Andrey; +5 Authors

    Dataset for the manuscript "Promoting photocatalytic activity of NH2-MIL-125(Ti) for H2 evolution reaction through creation of TiIII and CoI based proton reduction sites".Dataset includes raw N2 sorption data (.aif format), PXRD data of (Co@)NH2-MIL-125(Ti), Co K-edge XANES spectrum of Co foil and transitional XAS (70-1140 usec) and EXAFS data for Co@NH2-MIL-125(Ti), and raw TEM images of the photocatalysts. These data was used for analysis and plotting the figures for the manuscript.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    4TU.ResearchData | science.engineering.design
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ 4TU.ResearchData | s...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      4TU.ResearchData | science.engineering.design
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Yuan, Wei; Wang, Jie;

    Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting" Figure 1-4 data for "Anaconda-shaped Spiral Multi-layered Triboelectric Nanogenerators with Ultra-High Space Efficiency for Wave Energy Harvesting"

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;

    Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility22
    visibilityviews22
    downloaddownloads12
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Chan, Gabriel; Heeter, Jenny; Xu, Kaifeng;

    This data set is no longer current – The most current data and all historical data sets can be found at https://data.nrel.gov/submissions/244 This database represents a list of community solar projects identified through various sources as of Dec 2021. The list has been reviewed but errors may exist and the list may not be comprehensive. Errors in the sources e.g. press releases may be duplicated in the list. Blank spaces represent missing information. NREL invites input to improve the database including to - correct erroneous information - add missing projects - fill in missing information - remove inactive projects. Updated information can be submitted to the contact(s) located on the current data set page linked at the top.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Vuorinen, Tommi A.T.; Veikkolainen, Toni; Taylor, George; Gal, Martin; +3 Authors

    In summer 2020 the energy company St1 carried out its second stimulation of deep geothermal wells in Otaniemi, Espoo, in the Helsinki metropolitan area, southern Finland. Institute of Seismology of University of Helsinki (ISUH) monitored the induced seismicity during the stimulation, and also months before and after it. In the second half of 2022 ISUH consulted the Australian company Institute of Mine Seismology (IMS, https://www.imseismology.org) for providing an automatic phase picking on the ISUH 2020 event and waveform data catalogue (doi:10.23729/cdfd937c-37d5-46b0-9c16-f6e0c10bc81f) using an algorithm based on machine learning (doi: 10.1785/0220210068). The dataset provided by IMS was later transferred to formats used by ISUH. The resulting dataset comprises of phase pickings and relevant waveforms of 85 induced earthquakes that occurred between 8 March 2020 to 8 December, 2020, with local magnitudes between -1.1 and 1.4. Note that the event location and other metadata of the resulting dataset are still based on the ISUH 2020 catalogue in order to preserve the consistency within the dataset as some events did not have enough automatic phase picks for reliable relocation. Waveform, location and timing data have been produced at ISUH using seismic stations of the Finnish National Seismic Network (doi: 10.14470/UR044600) including the Helsinki local broadband network, the temporary HEL broadband network in Helsinki and Espoo, the temporary borehole network of St1 (doi: 10.1785/0220190253), and a pool of lightweight mobile seismic instruments operated by ISUH (GIPP data cubes, doi: 10.5880/GIPP.201925.1; SmartSolos and Refteks, doi: 10.1785/0220210195). The deployment is described in Rintamäki et al., 2021, A Seismic Network to Monitor the 2020 EGS Stimulation in the Espoo/Helsinki Area, Southern Finland, doi:10.1785/0220210195. Event data, event metadata, and station metadata are provided in distinct directories, and for event data, each event is assigned a subdirectory. Data formats follow generally accepted seismological standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fairdata IDA Researc...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Fairdata IDA Research Data Storage Service
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Fairdata IDA Researc...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Fairdata IDA Research Data Storage Service
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.