search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
26 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • 6. Clean water
  • 16. Peace & justice
  • German

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Die intensive Nutzung in Landwirtschaft und Forstwirtschaft und damit einhergehende Bodendegradation stellen eine enorme Herausforderung für die menschliche Gesellschaft dar. Insbesondere die Übernutzung reduziert die Ernährungssicherheit, führt zur Emission von Treibhausgasen und Aerosolen, treibt den Verlust der biologischen Vielfalt an, verschmutzt das Wasser und untergräbt eine Vielzahl von Ökosystemdienstlei - stungen, die über die Nahrungsmittelversorgung sowie die Wasser- und Klimaregulierung hinausgehen. Die direkten Emissionen durch Entwaldung, Düngung, Reisanbau und Wiederkäuer belaufen sich derzeit auf etwa 25% aller menschlichen Treibhausgasemissionen. Der intensiven Landnutzung zugrunde liegen sowohl das Bevölkerungswachstum, der Anstieg im pro-Kopf-Verbrauch an Kalorien, Holz und Fasern sowie verstärkter Konsum von Fleisch- und Milchprodukten. Dieses Kapitel fasst diese soziökonomischen Aspekte kurz zusammen und führt in die grundsätzlichen Prozesse ein, die der Emission von CO2, CH4 und N2O zugrunde liegen. In verschiedenen Kapiteln in diesem Buch werden diese Prozesse wieder aufgegriffen und unter verschiedenen Gesichtspunkten detaillierter beleuchtet. Socioeconomic aspects of land use change, effects on biogeochemical cycles and greenhouse gas emissions: Intensive agriculture and forestry and associated land degradation, pose an enormous challenge to human society. Overuse of land ecosystems reduces food security, leads to emissions of greenhouse gases and aerosols, drives biodiversity loss, pollutes water, and undermines a wide range of ecosystem services beyond food supply and water and climate regulation. Direct emissions from deforestation, fertilization, rice cultivation, and ruminants currently amount to about 25% of all human greenhouse gas emissions. Drivers of intensive land useare population growth, together with increases in per capita consumption of calories, wood, and fiber, and a shift towards consumption of meat and dairy products. This chapter briefly summarizes these socioeconomic aspects and introduces the basic processes underlying the emission of CO2, CH4, and N2O. Various chapters in this book revisit these processes and examine them in more detail from different perspectives. Aspectos socioeconómicos del cambio de uso de la tierra, efectos en los ciclos biogeoquímicos y emisiones de gases de efecto invernadero: El uso intensivo del suelo en la agricultura y la silvicultura asi como la asociada degradación del suelo representan un enorme desafío para la sociedad humana. En particular, el sobreuso hace peligrar la seguridad alimentaria, conduce a la emisión de gases de efecto invernadero y aerosoles, incrementa la pérdida de biodiversidad, contamina el agua y socava una variedad de servicios de los ecosistemas más allá del suministro de alimentos y la regulación del agua y el clima. Las emisiones directas de la deforestación, la fertilización, el cultivo de arroz y los rumiantes representan actualmente alrededor del 25% de todas las emisiones antrópicas de gases de efecto invernadero. El uso intensivo de la tierra se basa en el crecimiento de la población, el aumento del consumo per cápita de calorías, madera y fibra y un mayor consumo de carne y productos lácteos. Este capítulo resume brevemente estos aspectos socioeconómicos e introduce los procesos fundamentales que subyacen a la emisión de CO2, CH4 y N2O. Estos procesos se retoman en varios capítulos de este libro y se examinan con más detalle desde varias perspectivas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/wa...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Part of book or chapter of book . 2021
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/wa...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Part of book or chapter of book . 2021
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Helene Ulrike Gruber;

    Klima und Wohnen – Eine Geschichte gegenseitiger Einflussnahme Unser Planet verändert sich. Der anthropogene Klimawandel verursacht weltweit Dürren und Waldbrände, lässt die Meeresspiegel steigen und führt zu humanitären Katastrophen. Viele Länder streben die Umkehr respektive eine Abminderung der Folgen des Klimawandels an und haben zu diesem Zweck Klimabündnisse und Klima[1]abkommen ins Leben gerufen. Die Vereinten Nationen, die Europäische Union und Österreich haben dazu verschiedene Ziele formuliert und Maßnahmenkataloge entwickelt, die dem Trend der weltweiten Klimaerwärmung entgegen[1]wirken (Klimaschutzziele) und nachhaltige und zukunftsfähige Entwicklungen hervorbringen sollen (Nachhaltige Entwicklungsziele). Das Bauwesen mit dem Sektor Gebäude als zweitgrößtem Treibhausgas-Emittenten in Österreich ist neben dem Sektor Verkehr die größte Quelle von CO2-Emissionen außerhalb des EU-Emissionshandels. Private Haushalte sind mit der Bereitstellung von Raumwärme und Warmwasser für die meisten Treibhausgas-Emissionen verantwortlich. Nationale Jahresberichte zeigen, dass die gemeinsam formulierten und ratifizierten Klimaschutzziele nur unzureichend erfüllt werden. Sollte die 1,5°-Celsius-Marke der maximalen globalen Erwärmung überschritten werden, ist der weltweite Klimawandel nicht mehr umkehrbar. Der demografische Wandel und das Wachstum der Städte verlangen nach neuem Wohnraum. Nachverdichtung, Neubau und Sanierungen bieten mit dem Wissen ob der klimatischen Veränderungen und dem maßgeblichen Einfluss auf CO2-Emissionen privater Haushalte eine ideale Angriffsfläche für Veränderung im Bauwesen. Energieeffizientes Bauen unter Einbeziehung integrierter erneuerbarer Energieerschließung, Ressourcenschonung, der Einsatz von nach[1]wachsenden Rohstoffen sowie eine holistische Lebenszyklusanalyse sind hierbei wesentlich.Schnittstelle – Die Smart City Wien Rahmenstrategie 2019 – 2050.Die Rahmenstrategie für die „Smart City Wien 2050“ basiert auf den nachhaltigen Entwicklungszielen (den 17 SDGs) der UN Agenda 2030 und formuliert eine Mission sowie verschiedene Ziele, deren Einhaltung die Zukunftsfähigkeit und die Lebensqualität der Stadt für alle Menschen in Wien garantieren soll. Die Smart City Wien bekennt sich zum 1,5°-Celsius-Ziel. Gemeinsam mit Monitoring und Governance bilden die zwölf Zielbereiche das Rückgrat der Rahmenstrategie. Die einzelnen Unterziele geben Planenden Argumente für nachhaltige Lösungen in die Hand. Sechs der zwölf Zielbereiche wurden für diese Arbeit als Schnittstelle zwischen Klimaschutzzielen, nachhaltigen Entwicklungszielen und dem Wohnen ausgewählt: Partizipation, Gebäude, Energieversorgung, soziale Inklusion, Umwelt sowie Mobilität und Verkehr.Baugruppen – Partizipation als Ressource.Die Stadt Wien fördert Partizipationsprozesse und Baugruppen. In der Stadtentwicklung sind Baugruppenprojekte in Quartiersentwicklungen oder bei Bauträgerwettbewerben für kleinere Grundstücke seit einigen Jahren fest verankert. Baugruppenprojekte bergen Lebendigkeit und Strahlkraft, sie evozieren positive Entwicklungen im Stadtquartier und werden gezielt zur Stadtteil[1]entwicklung eingesetzt. Mit dem Einsatz von Ressourcen wie Zeit, Geld und Raum für die Beteiligung im Partizipations[1]prozess können im Bau oder der Sanierung sowie später in der Nutzungsphase eines Gebäudes Baumaterialien, Energiebedarf und CO2-Emis[1]sionen, aber auch Geld und Bodenfläche, ein[1]gespart werden. Aber auch außerhalb des Sektors Gebäude wird die Verringerung der Treibhaus[1]gas-Emissionen dank der sozialen Vernetzung vorangetrieben. Eigene Sharing-Plattformen für Mobilität und Gebrauchsgegenstände können beispielsweise Ergebnisse partizipativer Wohn[1]formen sein. Innerhalb der richtigen Rahmen[1]bedingungen fördern Baugruppenprojekte soziale Inklusion und tragen zur Schaffung von leistbarem Wohnraum bei.Motivation.Aus einem persönlichen Interesse für nachhaltige Entwicklungen habe ich ein Praktikum in einem Büro absolviert, welches Baugruppenprojekte, auch in Holzbauweise, realisiert. In meinem Praktikum bei einszueins architektur (September 2019 – April 2020) habe ich vier Monate am „Bauträger-wettbewerb für Baugruppen 2019“ gezeichnet. In einem gemeinsamen Projektteam bestehend aus Baugruppe, Architekturbüro, sozialer Prozessbegleitung und Bauträger wurde das Bau- und Projektkonzept namens HABITAT HIMMELTEICH für rund 30 Wohneinheiten in Essling in Wien entwickelt. Durch den persönlichen Bezug zu diesem Projekt habe ich beschlossen, die Wettbewerbsbroschüre HABITAT HIMMELTEICH als Basis für meine Diplomarbeit zu verwenden. Der partizipative Prozess der Gruppe innerhalb der 1. Stufe des Wettbewerbs wird als Fallbeispiel exemplarisch dargestellt. Diese Arbeit untersucht mithilfe der Wiener Rahmenstrategie als Schnittstelle positive Beiträge von Baugruppen zur Erfüllung der Klimaziele.Forschungsfragen und ZielDie vorliegende Diplomarbeit untersucht den Beitrag von Baugruppen zur Smart City Wien 2050 – und somit zur Erfüllung der Pariser Klimaschutzziele und der Nachhaltigen Entwicklungsziele. Das Ziel dieser Arbeit ist die Beleuchtung der positiven Beiträge von Baugruppen zur Erfüllung der ZieleMethodik und AufbauDie Methoden der Kapitel 2-4 und 6 sind Literaturrecherche und Beobachtung. Die Methoden des Kapitel 5 – Fallbeispiel sind die Mitarbeit am Projekt und Beobachtung. Climate and Housing - A History of Mutual Influence.Our planet is changing. Anthropogenic climate change causes droughts and forest fires worldwide, raises sea levels and leads to humanitarian disasters. Many countries are striving to reverse or mitigate the consequences of climate change and have set up climate alliances and agreements for this purpose. The United Nations, the European Union and Austria have formulated various goals and developed catalogs of measures to counteract the trend of global warming (climate protection goals) and to bring about sustainable and future-oriented developments (sustainable development goals). The construction industry, with the building sector as the second largest greenhouse gas emitter in Austria, is the largest source of CO2 emissions outside of the EU emissions trading, alongside the transport sector. Private households are responsible for most of the greenhouse gas emissions by providing space heating and hot water. National annual reports show that the jointly formulated and ratified climate protection goals are only inadequately met. If the maximum global warming of 1.5 ° Celsius is exceeded, global climate change is no longer reversible. Demographic change and the growth of cities require new living space. Densification, new construction and renovations offer an ideal target for changes in the construction industry with the knowledge of climatic changes and the significant influence on CO2 emissions in private households. Energy-efficient construction with the inclusion of integrated renewable energy development, resource conservation, the use of renewable raw materials and a holistic life cycle analysis are essential here. Interface - The Smart City Wien Framework Strategy 2019-2050.The framework strategy for “Smart City Wien 2050” is based on the sustainable development goals (the 17 SDGs) of the UN Agenda 2030 and formulates a mission and various goals, compliance with which should guarantee the future viability and quality of life of the city for all people in Vienna. Smart City Wien is committed to the 1.5 ° Celsius target. Together with monitoring and governance, the twelve target areas form the backbone of the framework strategy. The individual sub-goals provide planners with arguments for sustainable solutions. Six of the twelve target areas were selected for this work as an interface between climate protection goals, sustainable development goals and living: participation, buildings, energy supply, social inclusion, the environment, and mobility and transport. Assemblies - participation as a resource.The City of Vienna promotes participation processes and assemblies. In urban development, assembly projects have been firmly anchored in district developments or in property developer competitions for smaller properties for several years. Building group projects bring vitality and charisma, they evoke positive developments in the urban quarter and are used specifically for urban development. By using resources such as time, money and space for participation in the participation process, savings can be made on building materials, energy requirements and CO2 emissions, as well as money and floor space, during construction or renovation and later in the use phase of a building. But the reduction of greenhouse gas emissions is also being promoted outside the building sector thanks to social networking. Own sharing platforms for mobility and everyday objects can, for example, be the result of participatory forms of living. Within the right framework, assembly projects promote social inclusion and help create affordable housing. Motivation.Out of a personal interest in sustainable developments, I completed an internship in an office that implements assembly projects, including wood construction. In my internship at einszueins architektur (September 2019 - April 2020) I drew four months in the "Developer competition for assemblies 2019". The construction and project concept called HABITAT HIMMELTEICH for around 30 residential units in Essling in Vienna was developed in a joint project team consisting of an assembly group, architecture office, social process support and property developer. Due to the personal connection to this project, I decided to use the competition brochure HABITAT HIMMELTEICH as the basis for my diploma thesis. The participatory process of the group within the 1st stage of the competition is presented as an example. Using the Vienna framework strategy as an interface, this work examines positive contributions made by assemblies to meet the climate targets. Research questions and goalThis diploma thesis examines the contribution of assemblies to Smart City Vienna 2050 - and thus to the fulfillment of the Paris climate protection goals and the sustainable development goals. The aim of this work is to illuminate the positive contributions of assemblies to the achievement of the goals. Methodology and structureThe methods of Chapters 2-4 and 6 are literature research and observation. The methods of Chapter 5 - Case Study are collaboration on the project and observation.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Peter, Elsner; M��ller-Kirschbaum, Thomas; Schweitzer, Katharina; Wolf, Ronja; +35 Authors

    Heutige Produktions- und Konsummuster folgen weitgehend einer linearen Logik: abbauen, herstellen, konsumieren, entsorgen. Nur neun Prozent der Weltwirtschaft sind laut Circular Gap Report 2020 kreislaufgef��hrt. Doch dieses Wirtschaftsprinzip tr��gt zu einer massiven ��berschreitung der ���Planetaren Grenzen��� und damit zu einer Destabilisierung der ��kosysteme und Lebensgrundlage der Menschen bei, wie etwa des Klimasystems und der Artenvielfalt. Demzufolge wird derzeit viel ��ber einen Paradigmenwechsel in der Logik industrieller Wertsch��pfung diskutiert ��� weg von einem ressourcenintensiven hin zu einem ressourcenproduktiven, weitgehend kreislaufgef��hrten Modell. F��r das Industrie- und Exportland Deutschland ergeben sich weitreichende Chancen, schlie��lich bedeutet dieser Wechsel nicht weniger als eine Neuinterpretation des Modells ���Made in Germany���. Die Europ��ische Union und zahlreiche Mitgliedsl��nder haben bereits strategische Pl��ne f��r einen ��bergang zu einer ressourcenschonenden Wirtschaftsweise nach den Prinzipien der Circular Economy entwickelt. Auch au��erhalb von Europa folgen L��nder dieser Leitidee, beispielsweise China, Japan oder Kanada. F��r Deutschland fehlt solch ein Plan derzeit. Die Circular Economy Initiative Deutschland (CEID) hat zum Ziel, als Multi-Stakeholder-Prozess mit mehr als f��nfzig Institutionen aus Wirtschaft, Wissenschaft und Zivilgesellschaft die Grundlage f��r einen solchen Plan zu legen. In interdisziplin��ren und branchen��bergreifenden Arbeitsgruppen er��rtern rund 130 Expertinnen und Experten, wie zirkul��re Wirtschaftssysteme erm��glicht und umgesetzt werden k��nnen. Dazu untersuchen sie m��gliche Anwendungsfelder und diskutieren, welche Rahmenbedingungen zu einer erfolgreichen Umsetzung f��hren k��nnten. Die Circular Economy Initiative Deutschland definiert Ziele f��r diesen Ver��nderungsprozess und fokussiert folgende Themen: - Zirkul��re Gesch��ftsmodelle und digitale Technologien als Innovationstreiber - Neue Wertsch��pfungsnetzwerke f��r Batterien und Verpackung - Rahmenbedingungen f��r eine zirkul��re Transformation und Bemessung der volkswirtschaftlichen Circular-Economy-Potenziale Zwischen Oktober 2019 und Dezember 2020 hat die Arbeitsgruppe Verpackung der Circular Economy Initiative Deutschland ein gemeinsames Zielbild 2030 und Handlungsempfehlungen hin zu einer Kreislaufwirtschaft (CE) f��r Verpackungen entwickelt. Mit einer wertsch��pfungsketten��bergreifenden Betrachtung hat die Arbeitsgruppe Anreiz und Nutzen f��r die Kreislauff��hrung von Verpackungsmaterialien zwischen relevanten Akteuren beleuchtet und dadurch Handlungsoptionen entlang der gesamten Wertsch��pfungskette identifiziert. Damit unterst��tzen die Mitglieder die Initiierung, Umsetzung und langfristige Verankerung der Circular Economy in Deutschland und dar��ber hinaus. Mit 20 Mitgliedsorganisationen der Arbeitsgruppe ���Verpackung��� umfassen die Mitglieder Vertreterinnen und Vertreter aus f��hrenden deutschen Unternehmen, akademischen Institutionen und zivilgesellschaftlichen Vereinigungen ��ber die gesamte Wertsch��pfungskette hinweg. Damit konnte die Arbeitsgruppe ihr Ziel erreichen, eine wissenschaftlich fundierte und m��glichst ganzheitliche Betrachtung des Themas zu gew��hrleisten. Most current patterns of production and consumption follow a linear ���extract, produce, consume, dispose��� model. According to the Circular Gap Report 2020, the global economy is just 9% circular. This economic model is contributing to a massive transgression of ���planetary boundaries��� and the destabilisation of ecosystems and factors essential to human life such as the climate system and biodiversity. As a result, there is currently much discussion of a paradigm shift in the industrial value creation model, away from a resource-intensive system and towards a resource-productive, predominantly circular model. This shift offers significant opportunities for an industrialized, exporting nation like Germany ��� ultimately, it entails nothing less than a recasting of the ���Made in Germany��� model. The European Union and several of its member states have already developed strategic plans for the transition to a resource-efficient economic system based on circular economy principles. Non-European countries such as China, Japan and Canada are also following the same fundamental approach. However, Germany has yet to formulate a plan of its own. The Circular Economy Initiative Deutschland (CEID) is a multi-stakeholder initiative involving over fifty institutions from science, industry and civil society that aims to lay the foundations of a plan for Germany. In its interdisciplinary, cross-sectoral working groups, some 130 experts consider how to enable and implement circular economic models, exploring potential fields of application and discussing the conditions that could facilitate successful implementation. The Circular Economy Initiative Deutschland is developing targets for the transition, with a focus on the following themes: - Circular business models and digital technologies as drivers for innovation - New value networks for batteries and packaging - Framework conditions for a circular transformation and assessment of circularity���s economic potential Between October 2019 und December 2020, the Working Group ���Packaging��� of the Circular Economy Initiative Deutschland developed a joint target picture 2030 and recommendations for action for the establishment of a Circular Economy for packaging. With a cross-value chain approach, the Working Group highlighted incentives and benefits for the recycling of packaging materials across relevant stakeholders and thereby identified options for action along the entire value chain. With the report, the members support the initiation, implementation and long-term anchoring of the Circular Economy in Germany and beyond. The 20 members of the Working Group ���Packaging��� are experts from leading academic institutions, German businesses and civil society across the entire packaging value chain. This composition allowed the group to achieve its goal of addressing the topic as holistically as possible.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Weltweit spielen Großstaudämme eine immer wichtigere Rolle für die »erneuerbare« Energieversorgung und in den vielen Trockengebieten der Erde für die Bewässerung und Ausweitung der Landwirtschaft. Einige neuere Staudämme sind spektakuläre Riesenprojekte. Großstaudammprojekte sind aber inzwischen sehr umstritten, sie sind Konfliktherde; sie verändern die Landnutzung diametral, sie vertreiben die eingesessene Bevölkerung und zerstören deren Lebensgrundlagen. Die ökologischen und ökonomischen Auswirkungen sind nicht nur positiv, sondern sie weisen in erheblichem Maße auch negative Folgen auf. Dazu kommt, dass Staudamm und Nutzung der Wasserspeicher auch nur eine begrenzte Zeit möglich ist. Large water dams for energy generation and irrigation and its social problems: An introduction: Large dams play an increasingly important role worldwide for the renewable energy supply and in the many arid regions of the world for irrigation and the expansion of agriculture. Some of the newer dams are spectacular giant projects. Large dam projects are now very controversial, they are sources of conflicts; they change land use diametrically, they drive out the local population and destroy their livelihoods. The ecological and economic effects are not only positive, they also have negative consequences to a considerable extent. In addition, the dam and the use of the water reservoir are only possible for a limited time. Grandes represas para la generación de energía y proyectos de irrigación y sus conflictos sociales: Una introduccion: Las grandes represas desempeñan un papel cada vez más importante en todo el mundo en la producción de energia »renovable« y en las muchas regiones áridas del mundo para mejorar el riego y la expansión agricola. Algunas de las represas más nuevas son proyectos gigantescos. Muchos proyectos de represas tienen sus lados negativos y son fuentes de conflictos; cambian diametralmente el uso de la tierra, conducen al desalojos de la población local y destruyen sus fuentes de trabajo, también los efectos eco­lógicos y económicos son en gran medida negativos. Además el uso de las represan tienen un tiempo limitado y su desmontaje es costoso.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/wa...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Part of book or chapter of book . 2021
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/wa...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Part of book or chapter of book . 2021
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Suncana, Novosel; Christian, Prangenberg; Dieter C, Wirtz; Christof, Burger; +2 Authors

    Surgery as an important part of the healthcare sector contributes to environmental pollution and therefore to the climate crisis. The aim of this review is to create an overview of the current data situation and possibilities for improvement.A literature search was performed in PubMed/MEDLINE using the following five terms: "carbon footprint and surgery", "climate change and surgery", "waste and surgery" and "greening the operating room" focusing on energy, waste, water and anesthesia.The greatest part of emissions in surgery is generated by the use of energy. The operating rooms (OR) need 3-6 times more energy than the other hospital rooms. Of the total hospital waste 20-30% is produced during operations, which is particularly due to the increasing use of disposable articles and 50-90% of waste classified as hazardous is incorrectly sorted. The disposal of this waste is not only more environmentally harmful but also much more expensive. The processing of surgical items by autoclaving consumes large amounts of water. Modern sterilization methods, for example using plasma could be future alternatives. Up to 20% of volatile nonmetabolized anesthetic agents are vented into the stratosphere and destroy the ozone layer. Intravenous anesthetic drugs should be used whenever possible instead. The choice of operating method can also contribute to the environmental impact of an operation.The surgical disciplines are a relevant producer of environmental pollutants. Through diverse interdisciplinary approaches surgery can also contribute to protecting the environment.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schmutz, S.; Jungwirth, M.; Ratschan, C.; Siemens M. V.; +33 Authors

    Originally, the Danube salmon (Hucho hucho) occurred in Bavaria and Austria in more than 250 rivers occupying more than 7,400 km of rivers. Nowadays, populations in »very good« and »good« status exist in only 0.7 % and 7.1 % of the original distribution. Therefore, the Danube salmon is classified as an endangered species. Due to ongoing stock declines the Danube salmon is running the risk to become a critically endangered species soon. The main reasons for the declines are river channelization and hydropower development. In addition, climate change may further contribute to stock declines in lowland river sections due to exceedance of water temperature limits of this cold-water species. Furthermore, Danube salmon and prey fish populations have lost their resilience to cope with re-established populations of fish predators (cormorant, goosander, fish otter) leading to ongoing population declines. Effective protection against further degradations such as new hydropower developments is required to safeguard the Danube salmon remaining populations. Furthermore, degraded rivers need to be restored and fish predators have to be managed to allow recovery of Danube salmon and prey fish populations. Due to the precarious situation conservation and restoration actions have to be implemented immediately.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility831
    visibilityviews831
    downloaddownloads740
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Daria, Luschkova; Alika, Ludwig; Claudia, Traidl-Hoffmann;

    The climate crisis and its consequences represent the greatest challenge facing human health and health care system in the 21st century. It threatens to undermine the last decades of health gains. Rising temperatures, fires, floods and droughts can directly and indirectly cause human pathologies, that are physical and mental. Extreme weather events lead to loss of life, basic life resources and cause severe mental burden. More intense and frequent heat waves due to global warming impact human health and increase mortality, especially for those most vulnerable. The heat-related health risk depends on individual state of health as well as environmental and socioeconomic characteristics of residential areas. Increasing exposure to air pollutants, due to wildfires and anthropogenic emissions, raises respiratory and cardiovascular mortality. Climate warming changes ecosystems and enhances biological invasions that can better adapt to warm environments. Pathogen profiles are changing, transmission and spread of vector-borne diseases as Malaria or Dengue are increasing. Further, rising temperatures and air pollution increase the production and allergenicity of pollen, associated with higher prevalence of allergic diseases. Protective environmental factors, as biodiversity or diverse microbiome, should be given greater consideration in future research.Health sector has the central responsibility as the fifth-largest greenhouse gas emitter to transform in a climate-neutral and sustainable way, e. g. by efficient use of resources. Further education and training in this area should be intensified and included in curricula for medical staff. Furthermore, medical professionals must educate patients about the burden of climate change, climate resilience, and the benefits of CO2 reduction - for human but also for planetary health.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bernhardt, Jacob Jeff; Rolfes, Lennart; Kreins, Peter; Henseler, Martin; +4 Authors

    The challenges associated with ongoing climate change will pose major challenges for global agriculture in the future and require well thought-out adaptation strategies. Thus, adaptation of water management is one of the major tasks to be tackled. Changes in the monthly water balance and precipitation depths and their intra-annual shift in favor of the winter half-year, as well as increasing evaporation rates, indicate that the availability of water is an limited production factor. These global changes can also be considered on a regional scale and are consequently also of high relevance in Germany. The regional representation of the scenario succeeds on the basis of the core ensemble of the German Weather Service (DWD). Based on these climate projections, the irrigation demand of Bavaria's agriculture is calculated in a model simulation. The model results are subdivided into arable crops, vegetable crops and special crops. Studies on irrigation demand done in the past at the Thünen Institute form the basis of the model development, which has been continuously optimized in the course of the project. The model approach is based on the principle of Geisenheim irrigation management where soil and crop-specific characteristics are used in addition to climate data to differentiate plants water requirements. This information is combined with spatial data on agricultural land use in Bavaria in order to estimate regional irrigation demands. In this study, the irrigation demands of Bavarian agriculture are simulated for the periods 1991– 2020 (ex-post period) and 2021–2050 (future). The mean irrigation demand of all considered crops increases, comparing the two observation periods. By 2050 the mean annual water demand is expected to increase by 19 %. Differentiated by land use classes, Bavaria's irrigation demand increases by 19 % in arable farming, by 23 % in vegetable growing and by 10 % in the cultivation of special crops. However, annual fluctuations in climatic conditions can lead to significant deviations from the mean trend. The spatial analysis of the model results displays a high degree of correspondence with the current irrigation regions of Bavaria. Thus, a high water demand of agriculture can be identified by the model in the regions Knoblauchsland, the wine-growing regions of Lower Franconia, the areas south of Regensburg and north of Augsburg. The model developed in this study has a high sensitivity to the input parameters and allows simulations of different time periods and study areas. The methodology could be improved and further developed. Also, the transferability to other projects and issues is given. DOI:10.3220/REP1657029754000

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Möstl, Daniel;

    Bei der biologischen Abwasserreinigung anfallende Schlämme müssen, um sie lagerfähig zu machen und Geruchsemissionen zu vermeiden, aerob (durch Belüften) oder anaerob (durch Faulung unter Sauerstoffausschluss) stabilisiert werden. Der in Kläranlagen anfallende Rohschlamm, eine Mischung aus Primär- und Sekundär- (Überschuss)schlamm, wird im zweiten Fall unter anaeroben Bedingungen bei etwa 38°C umgesetzt. Das dabei entstehende Gas besteht in etwa aus zwei Dritteln Methan (CH4) und einem Drittel Kohlenstoffdioxid (CO2), sowie Schwefelwasserstoff (H2S), Wasserdampf und Spurengasen.Für die Verwendung als Treibstoff für Fahrzeuge oder die Einleitung in das Gasnetzwerk sind jedoch höhere Methangehalte vonnöten. Um dies zu bewerkstelligen, kann dem Faulturm ein Rieselbett nachgeschaltet werden, in welchem das Kohlenstoffdioxid des Biogases mit Wasserstoff (H2) biologisch zu Methan umgesetzt wird. In dieser Arbeit wurde ein Faulgasreaktor im Labormaßstab betrieben. Das dabei ent-standene Produktgas wurde mit Wasserstoff aus einer Druckflasche in ein nachgeschaltetes Rieselbett eingeleitet. Das Rieselbett wurde mit porösen Polyurethanwürfeln als Aufwuchsmaterial für die Bakterien gefüllt, welche die biologische Methanisierung bewerkstelligen, und mit Faulschlamm beimpft. Mit Hilfe einer Pumpe erfolgte die Zirkulation der flüssigen Phase im Rieselbett. Da ein Mangel an essenziellen Spurenelementen bei den anaeroben Bakterien zu einem eingeschränkten Stoffumsatz führen, wurde eine Nährlösung mit unterschiedlichen Spurenelementen hergestellt und zugesetzt. Ziel dieser Arbeit war es, den benötigten Bedarf an Spurenelementen zu ermitteln, um eine gezielte Zugabe der nötigen Chemikalien zu ermöglichen, um in Hinblick auf dieses Kriterium eine Limitierung im Stoffumsatz zu verhindern. Hierfür wurden Proben aus der Rieselflüssigkeit entnommen, welche mit Hilfe einer ICP-OES (inductively coupled plasma optical emission spectrometry) analysiert wurden. Des Weiteren wurde untersucht, ob sich die hydrogenotrophen Methanbildner überwiegend in der Rieselflüssigkeit oder auf den Aufwuchskörpern befinden. Sludge (biosolids) produced during biological wastewater treatment has to be stabilised aerobically (by aeration) or anaerobically (by digestion in the absence of oxygen) for storage and to avoid odour emissions. In the second case, the raw sludge produced in wastewater treatment plants - a mixture of primary and secondary (overflow) sludge - is converted under anaerobic conditions at about 38 °C. The produced gas consists of approximately two-thirds methane (CH4) and one-third carbon dioxide (CO2), as well as hydrogen sulfide (H2S), water vapour and trace gases. However, higher methane contents are required to use biomethane as fuel for vehicles or for direct injection it into the gas network. To accomplish this, a trickle bed can be installed subsequent of the digester, in which the carbon dioxide from the biogas of the digester biologically can be converted with hydrogen (H2) to methane. In this work, a laboratory-scale digester was operated for biogas production. The resulting product gas was introduced with hydrogen into a post reactor trickle bed. The trickle bed was filled with porous polyurethane cubes acting as carrier for the bacteria and inoculated with digested sludge. A pump was used to circulate the trickling liquid. Since deficiencies in essential trace elements lead to limited functionality of the anaerobic bacteria, a nutrient solution with different trace elements was added. The aim of this work is to determine the required amount of trace elements to enable a controlled addition of the necessary chemicals to avoid limiting conditions. For this purpose, samples from the trickle bed liquid were taken and analyzed by ICP-OES (inductively coupled plasma optical emission spectrometry). Furthermore, it was investigated whether the hydrogenotrophic methane producers are located rather in the trickling liquid or on the growth bod-ies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Klemens Füreder;

    Der Anteil des Energiebedarfs von R��hrwerken auf Belebungsanlagen am Gesamtenergiebedarf von Kl��ranlagen liegt, wie in dieser Arbeit gezeigt werden kann, bei 5 bis 20 %. R��hrwerke standen im Gegensatz zu Bel��ftungssystemen jedoch bisher nicht im zentralen Fokus von Arbeiten zur Energieoptimierung. Ziel dieser Dissertation ist es daher, erstmals einen fundierten ��berblick zum Energiebedarf und Energieoptimierungspotential von R��hrwerken (allgemein: Durchmischungs-Systemen) in Belebungsanlagen vorzulegen. Hierzu wurde eine umfassende Datenbasis von Kl��ranlagen aufgebaut und hinsichtlich folgender Kennzahlen zum Energiebedarf von R��hrwerken ausgewertet: (A) einwohnerspezifischer Energiebedarf Wmix,EW [kWh/EW120/a], (B) Leistungsdichte PR [W/m3], (C) volumen-spezifischer Energiebedarf Wmix,V [Wh/m3/d].Aus der statistischen Analyse des Datenmaterials wurden Zielwerte f��r Wmix,EW und PR abgeleitet und deren praktische Relevanz durch ein umfangreiches Messprogramm auf Gro��anlagen best��tigt. Sowohl Wmix,EW als auch dessen Zielwerte sind indirekt proportional zur mittleren CSB-Zulauffracht. Die Zielwerte von Wmix,EW liegen hierbei zwischen 6,8 kWh/EW120/a (< 5.000 EW120) und 1,3 kWh/EW120/a (> 30.000 EW120). Die Leistungsdichte PR und dessen Zielwerte sind indirekt-proportional zum Beckenvolumen, die Zielwerte von PR liegen zwischen 5,7 W/m3 (��� 200 m3) und 1,1 W/m3 (> 2.000 m3).Die H��he der dritten Kennzahl, des volumenspezifischen Energiebedarfs Wmix,V, h��ngt ma��geblich davon ab, ob ein Becken bel��ftet oder unbel��ftet ist. Bei den bel��fteten Becken der ausgewerteten Datenbasis liegt der Median von Wmix,V bei ca. 45 Wh/m3/d, bei unbel��fteten Becken bei ca. 90 Wh/m3/d.Die Energieoptimierung von R��hrwerken kann grunds��tzliche ��ber zwei Wege erreicht werden: die Reduktion der Leistungsdichte und die Reduktion der t��glichen Laufzeit der R��hrwerke. Die Energiesparoptionen reichen hierbei von einer kontinuierlichen Durch-mischung bei kleinen Leistungsdichten von 1 W/m3 bis zur Durchmischung mittels kurzer, energieintensiver Impulse (Impulsbel��ftung, Impulsr��hren). Folgender Zusammenhang konnte hierzu festgestellt werden: Je k��rzer die t��gliche Dauer des Energieeintrags, desto h��her die einzutragende Leistungsdichte bei vergleichbarem volumenspezifischem Energiebedarf Wmix,V. Bei g��nstigen Bedingungen hinsichtlich Beckenvolumen, Beckengeometrie, Bel��ftung und R��hrwerksposition, kann Wmiv,V in bel��fteten Becken auf < 24 Wh/m3/d reduziert werden.Jegliche Energieoptimierung von R��hrwerken ist letztlich nur dann sinnvoll, wenn folgende Kriterien erf��llt werden: (1) Die R��hrenergieeinsparung darf zu keiner Beeintr��chtigung der Abwassereinigungsaufgaben der Kl��ranlage f��hren; die entscheidenden Kontrollgr����en hierf��r sind: (1a) Sohlgeschwindigkeiten, (1b) Verteilung des TSBB-Gehalts im Belebungsbecken, (1c) Sohlablagerungen, (1d) Denitrifikation. (2) Die R��hrenergieeinsparung muss auch zu einer Energieeinsparung im Gesamtsystem ���R��hrwerke und Bel��ftung��� f��hren; der diesbez��gliche Nachweis kann ��ber vergleichende Sauerstoffzufuhrversuche bei unterschiedlichem Mischenergieeintrag erfolgen. Die praktische Anwendbarkeit der in (1) und (2) angef��hrten Kontrollgr����en und Versuche konnte bei einem umfangreichen Messprogramm auf der Hauptkl��ranlage Wien (HKA Wien) nachgewiesen werden. This work shows that agitators in activated sludge plants consume about 5 to 20 % of the total energy demand of a wastewater treatment plant. However, in contrast to aeration systems, agitators have not been the central focus of energy optimization yet. The aim of this work is therefore to provide a sound overview regarding the current state and the optimization potential of energy consumption of agitators (generally: mixing systems) in activated sludge tanks. For this purpose, a broad and consistent database of operating wastewater treatment plants was set up and evaluated using following agitator energy indicators: (A) inhabitant-specific energy demand Wmix,PE [kWh/PE120/a], (B) power density PD [W/m3], (C) volume-specific energy demand Wmix,V [Wh/m3/d].Based on the statistical analysis of the data set target values were derived for Wmix,PE and PD, the practical feasibility of which was confirmed by an extensive measuring program at large scale. Both Wmix,PE and its target values are indirectly proportional to the average incoming COD load, with target values ranging from 6.8 kWh/PE120/a (< 5,000 PE120) to 1.3 kWh/PE120/a (> 30,000 PE120). Similar results were found for power density: both PD and its target values prove to be indirectly proportional to tank volume, with target values ranging from 5.7 W/m3 (< 200 m3) to 1.1 W/m3 (> 2,000 m3).The value of the third key indicator, volume-specific energy requirement Wmix,V significantly depends on whether the tank is aerated or not. The median of Wmix,V for the aerated tanks is approx. 45 Wh/m3/d, for unaerated tanks approx. is 90 Wh/m3/d.In principle, there are two ways to optimize agitator operation: the reduction of power density and the reduction of daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W/m3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). The following correlation was detected: the shorter the duration of daily energy input, the higher the power density at comparable volume-specific energy demand Wmix,V. Under favorable conditions with respect to tank volume, tank geometry, aeration and agitator position, the mixing energy in aerated tanks can be reduced to < 24 Wh/m3/d.Energy optimization of agitators is only feasible if the following criteria are met: (1) it must not impair the treatment of wastewater itself; the decisive control parameters are (1a) near-ground velocity, (1b) distribution of total suspended solids in the tank, (1c) tank deposits, (1d) denitrification performance. (2) it must lead to energy savings in the overall system "agitators and aeration"; evidence can be provided by comparative oxygen supply tests at different mixing energy inputs. The practical applicability of the control parameters and tests listed in (1) and (2) could be demonstrated in an extensive measurement program at the main wastewater treatment plant Vienna.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
search
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
26 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Die intensive Nutzung in Landwirtschaft und Forstwirtschaft und damit einhergehende Bodendegradation stellen eine enorme Herausforderung für die menschliche Gesellschaft dar. Insbesondere die Übernutzung reduziert die Ernährungssicherheit, führt zur Emission von Treibhausgasen und Aerosolen, treibt den Verlust der biologischen Vielfalt an, verschmutzt das Wasser und untergräbt eine Vielzahl von Ökosystemdienstlei - stungen, die über die Nahrungsmittelversorgung sowie die Wasser- und Klimaregulierung hinausgehen. Die direkten Emissionen durch Entwaldung, Düngung, Reisanbau und Wiederkäuer belaufen sich derzeit auf etwa 25% aller menschlichen Treibhausgasemissionen. Der intensiven Landnutzung zugrunde liegen sowohl das Bevölkerungswachstum, der Anstieg im pro-Kopf-Verbrauch an Kalorien, Holz und Fasern sowie verstärkter Konsum von Fleisch- und Milchprodukten. Dieses Kapitel fasst diese soziökonomischen Aspekte kurz zusammen und führt in die grundsätzlichen Prozesse ein, die der Emission von CO2, CH4 und N2O zugrunde liegen. In verschiedenen Kapiteln in diesem Buch werden diese Prozesse wieder aufgegriffen und unter verschiedenen Gesichtspunkten detaillierter beleuchtet. Socioeconomic aspects of land use change, effects on biogeochemical cycles and greenhouse gas emissions: Intensive agriculture and forestry and associated land degradation, pose an enormous challenge to human society. Overuse of land ecosystems reduces food security, leads to emissions of greenhouse gases and aerosols, drives biodiversity loss, pollutes water, and undermines a wide range of ecosystem services beyond food supply and water and climate regulation. Direct emissions from deforestation, fertilization, rice cultivation, and ruminants currently amount to about 25% of all human greenhouse gas emissions. Drivers of intensive land useare population growth, together with increases in per capita consumption of calories, wood, and fiber, and a shift towards consumption of meat and dairy products. This chapter briefly summarizes these socioeconomic aspects and introduces the basic processes underlying the emission of CO2, CH4, and N2O. Various chapters in this book revisit these processes and examine them in more detail from different perspectives. Aspectos socioeconómicos del cambio de uso de la tierra, efectos en los ciclos biogeoquímicos y emisiones de gases de efecto invernadero: El uso intensivo del suelo en la agricultura y la silvicultura asi como la asociada degradación del suelo representan un enorme desafío para la sociedad humana. En particular, el sobreuso hace peligrar la seguridad alimentaria, conduce a la emisión de gases de efecto invernadero y aerosoles, incrementa la pérdida de biodiversidad, contamina el agua y socava una variedad de servicios de los ecosistemas más allá del suministro de alimentos y la regulación del agua y el clima. Las emisiones directas de la deforestación, la fertilización, el cultivo de arroz y los rumiantes representan actualmente alrededor del 25% de todas las emisiones antrópicas de gases de efecto invernadero. El uso intensivo de la tierra se basa en el crecimiento de la población, el aumento del consumo per cápita de calorías, madera y fibra y un mayor consumo de carne y productos lácteos. Este capítulo resume brevemente estos aspectos socioeconómicos e introduce los procesos fundamentales que subyacen a la emisión de CO2, CH4 y N2O. Estos procesos se retoman en varios capítulos de este libro y se examinan con más detalle desde varias perspectivas.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/wa...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Part of book or chapter of book . 2021
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/wa...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Part of book or chapter of book . 2021
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Helene Ulrike Gruber;

    Klima und Wohnen – Eine Geschichte gegenseitiger Einflussnahme Unser Planet verändert sich. Der anthropogene Klimawandel verursacht weltweit Dürren und Waldbrände, lässt die Meeresspiegel steigen und führt zu humanitären Katastrophen. Viele Länder streben die Umkehr respektive eine Abminderung der Folgen des Klimawandels an und haben zu diesem Zweck Klimabündnisse und Klima[1]abkommen ins Leben gerufen. Die Vereinten Nationen, die Europäische Union und Österreich haben dazu verschiedene Ziele formuliert und Maßnahmenkataloge entwickelt, die dem Trend der weltweiten Klimaerwärmung entgegen[1]wirken (Klimaschutzziele) und nachhaltige und zukunftsfähige Entwicklungen hervorbringen sollen (Nachhaltige Entwicklungsziele). Das Bauwesen mit dem Sektor Gebäude als zweitgrößtem Treibhausgas-Emittenten in Österreich ist neben dem Sektor Verkehr die größte Quelle von CO2-Emissionen außerhalb des EU-Emissionshandels. Private Haushalte sind mit der Bereitstellung von Raumwärme und Warmwasser für die meisten Treibhausgas-Emissionen verantwortlich. Nationale Jahresberichte zeigen, dass die gemeinsam formulierten und ratifizierten Klimaschutzziele nur unzureichend erfüllt werden. Sollte die 1,5°-Celsius-Marke der maximalen globalen Erwärmung überschritten werden, ist der weltweite Klimawandel nicht mehr umkehrbar. Der demografische Wandel und das Wachstum der Städte verlangen nach neuem Wohnraum. Nachverdichtung, Neubau und Sanierungen bieten mit dem Wissen ob der klimatischen Veränderungen und dem maßgeblichen Einfluss auf CO2-Emissionen privater Haushalte eine ideale Angriffsfläche für Veränderung im Bauwesen. Energieeffizientes Bauen unter Einbeziehung integrierter erneuerbarer Energieerschließung, Ressourcenschonung, der Einsatz von nach[1]wachsenden Rohstoffen sowie eine holistische Lebenszyklusanalyse sind hierbei wesentlich.Schnittstelle – Die Smart City Wien Rahmenstrategie 2019 – 2050.Die Rahmenstrategie für die „Smart City Wien 2050“ basiert auf den nachhaltigen Entwicklungszielen (den 17 SDGs) der UN Agenda 2030 und formuliert eine Mission sowie verschiedene Ziele, deren Einhaltung die Zukunftsfähigkeit und die Lebensqualität der Stadt für alle Menschen in Wien garantieren soll. Die Smart City Wien bekennt sich zum 1,5°-Celsius-Ziel. Gemeinsam mit Monitoring und Governance bilden die zwölf Zielbereiche das Rückgrat der Rahmenstrategie. Die einzelnen Unterziele geben Planenden Argumente für nachhaltige Lösungen in die Hand. Sechs der zwölf Zielbereiche wurden für diese Arbeit als Schnittstelle zwischen Klimaschutzzielen, nachhaltigen Entwicklungszielen und dem Wohnen ausgewählt: Partizipation, Gebäude, Energieversorgung, soziale Inklusion, Umwelt sowie Mobilität und Verkehr.Baugruppen – Partizipation als Ressource.Die Stadt Wien fördert Partizipationsprozesse und Baugruppen. In der Stadtentwicklung sind Baugruppenprojekte in Quartiersentwicklungen oder bei Bauträgerwettbewerben für kleinere Grundstücke seit einigen Jahren fest verankert. Baugruppenprojekte bergen Lebendigkeit und Strahlkraft, sie evozieren positive Entwicklungen im Stadtquartier und werden gezielt zur Stadtteil[1]entwicklung eingesetzt. Mit dem Einsatz von Ressourcen wie Zeit, Geld und Raum für die Beteiligung im Partizipations[1]prozess können im Bau oder der Sanierung sowie später in der Nutzungsphase eines Gebäudes Baumaterialien, Energiebedarf und CO2-Emis[1]sionen, aber auch Geld und Bodenfläche, ein[1]gespart werden. Aber auch außerhalb des Sektors Gebäude wird die Verringerung der Treibhaus[1]gas-Emissionen dank der sozialen Vernetzung vorangetrieben. Eigene Sharing-Plattformen für Mobilität und Gebrauchsgegenstände können beispielsweise Ergebnisse partizipativer Wohn[1]formen sein. Innerhalb der richtigen Rahmen[1]bedingungen fördern Baugruppenprojekte soziale Inklusion und tragen zur Schaffung von leistbarem Wohnraum bei.Motivation.Aus einem persönlichen Interesse für nachhaltige Entwicklungen habe ich ein Praktikum in einem Büro absolviert, welches Baugruppenprojekte, auch in Holzbauweise, realisiert. In meinem Praktikum bei einszueins architektur (September 2019 – April 2020) habe ich vier Monate am „Bauträger-wettbewerb für Baugruppen 2019“ gezeichnet. In einem gemeinsamen Projektteam bestehend aus Baugruppe, Architekturbüro, sozialer Prozessbegleitung und Bauträger wurde das Bau- und Projektkonzept namens HABITAT HIMMELTEICH für rund 30 Wohneinheiten in Essling in Wien entwickelt. Durch den persönlichen Bezug zu diesem Projekt habe ich beschlossen, die Wettbewerbsbroschüre HABITAT HIMMELTEICH als Basis für meine Diplomarbeit zu verwenden. Der partizipative Prozess der Gruppe innerhalb der 1. Stufe des Wettbewerbs wird als Fallbeispiel exemplarisch dargestellt. Diese Arbeit untersucht mithilfe der Wiener Rahmenstrategie als Schnittstelle positive Beiträge von Baugruppen zur Erfüllung der Klimaziele.Forschungsfragen und ZielDie vorliegende Diplomarbeit untersucht den Beitrag von Baugruppen zur Smart City Wien 2050 – und somit zur Erfüllung der Pariser Klimaschutzziele und der Nachhaltigen Entwicklungsziele. Das Ziel dieser Arbeit ist die Beleuchtung der positiven Beiträge von Baugruppen zur Erfüllung der ZieleMethodik und AufbauDie Methoden der Kapitel 2-4 und 6 sind Literaturrecherche und Beobachtung. Die Methoden des Kapitel 5 – Fallbeispiel sind die Mitarbeit am Projekt und Beobachtung. Climate and Housing - A History of Mutual Influence.Our planet is changing. Anthropogenic climate change causes droughts and forest fires worldwide, raises sea levels and leads to humanitarian disasters. Many countries are striving to reverse or mitigate the consequences of climate change and have set up climate alliances and agreements for this purpose. The United Nations, the European Union and Austria have formulated various goals and developed catalogs of measures to counteract the trend of global warming (climate protection goals) and to bring about sustainable and future-oriented developments (sustainable development goals). The construction industry, with the building sector as the second largest greenhouse gas emitter in Austria, is the largest source of CO2 emissions outside of the EU emissions trading, alongside the transport sector. Private households are responsible for most of the greenhouse gas emissions by providing space heating and hot water. National annual reports show that the jointly formulated and ratified climate protection goals are only inadequately met. If the maximum global warming of 1.5 ° Celsius is exceeded, global climate change is no longer reversible. Demographic change and the growth of cities require new living space. Densification, new construction and renovations offer an ideal target for changes in the construction industry with the knowledge of climatic changes and the significant influence on CO2 emissions in private households. Energy-efficient construction with the inclusion of integrated renewable energy development, resource conservation, the use of renewable raw materials and a holistic life cycle analysis are essential here. Interface - The Smart City Wien Framework Strategy 2019-2050.The framework strategy for “Smart City Wien 2050” is based on the sustainable development goals (the 17 SDGs) of the UN Agenda 2030 and formulates a mission and various goals, compliance with which should guarantee the future viability and quality of life of the city for all people in Vienna. Smart City Wien is committed to the 1.5 ° Celsius target. Together with monitoring and governance, the twelve target areas form the backbone of the framework strategy. The individual sub-goals provide planners with arguments for sustainable solutions. Six of the twelve target areas were selected for this work as an interface between climate protection goals, sustainable development goals and living: participation, buildings, energy supply, social inclusion, the environment, and mobility and transport. Assemblies - participation as a resource.The City of Vienna promotes participation processes and assemblies. In urban development, assembly projects have been firmly anchored in district developments or in property developer competitions for smaller properties for several years. Building group projects bring vitality and charisma, they evoke positive developments in the urban quarter and are used specifically for urban development. By using resources such as time, money and space for participation in the participation process, savings can be made on building materials, energy requirements and CO2 emissions, as well as money and floor space, during construction or renovation and later in the use phase of a building. But the reduction of greenhouse gas emissions is also being promoted outside the building sector thanks to social networking. Own sharing platforms for mobility and everyday objects can, for example, be the result of participatory forms of living. Within the right framework, assembly projects promote social inclusion and help create affordable housing. Motivation.Out of a personal interest in sustainable developments, I completed an internship in an office that implements assembly projects, including wood construction. In my internship at einszueins architektur (September 2019 - April 2020) I drew four months in the "Developer competition for assemblies 2019". The construction and project concept called HABITAT HIMMELTEICH for around 30 residential units in Essling in Vienna was developed in a joint project team consisting of an assembly group, architecture office, social process support and property developer. Due to the personal connection to this project, I decided to use the competition brochure HABITAT HIMMELTEICH as the basis for my diploma thesis. The participatory process of the group within the 1st stage of the competition is presented as an example. Using the Vienna framework strategy as an interface, this work examines positive contributions made by assemblies to meet the climate targets. Research questions and goalThis diploma thesis examines the contribution of assemblies to Smart City Vienna 2050 - and thus to the fulfillment of the Paris climate protection goals and the sustainable development goals. The aim of this work is to illuminate the positive contributions of assemblies to the achievement of the goals. Methodology and structureThe methods of Chapters 2-4 and 6 are literature research and observation. The methods of Chapter 5 - Case Study are collaboration on the project and observation.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Peter, Elsner; M��ller-Kirschbaum, Thomas; Schweitzer, Katharina; Wolf, Ronja; +35 Authors

    Heutige Produktions- und Konsummuster folgen weitgehend einer linearen Logik: abbauen, herstellen, konsumieren, entsorgen. Nur neun Prozent der Weltwirtschaft sind laut Circular Gap Report 2020 kreislaufgef��hrt. Doch dieses Wirtschaftsprinzip tr��gt zu einer massiven ��berschreitung der ���Planetaren Grenzen��� und damit zu einer Destabilisierung der ��kosysteme und Lebensgrundlage der Menschen bei, wie etwa des Klimasystems und der Artenvielfalt. Demzufolge wird derzeit viel ��ber einen Paradigmenwechsel in der Logik industrieller Wertsch��pfung diskutiert ��� weg von einem ressourcenintensiven hin zu einem ressourcenproduktiven, weitgehend kreislaufgef��hrten Modell. F��r das Industrie- und Exportland Deutschland ergeben sich weitreichende Chancen, schlie��lich bedeutet dieser Wechsel nicht weniger als eine Neuinterpretation des Modells ���Made in Germany���. Die Europ��ische Union und zahlreiche Mitgliedsl��nder haben bereits strategische Pl��ne f��r einen ��bergang zu einer ressourcenschonenden Wirtschaftsweise nach den Prinzipien der Circular Economy entwickelt. Auch au��erhalb von Europa folgen L��nder dieser Leitidee, beispielsweise China, Japan oder Kanada. F��r Deutschland fehlt solch ein Plan derzeit. Die Circular Economy Initiative Deutschland (CEID) hat zum Ziel, als Multi-Stakeholder-Prozess mit mehr als f��nfzig Institutionen aus Wirtschaft, Wissenschaft und Zivilgesellschaft die Grundlage f��r einen solchen Plan zu legen. In interdisziplin��ren und branchen��bergreifenden Arbeitsgruppen er��rtern rund 130 Expertinnen und Experten, wie zirkul��re Wirtschaftssysteme erm��glicht und umgesetzt werden k��nnen. Dazu untersuchen sie m��gliche Anwendungsfelder und diskutieren, welche Rahmenbedingungen zu einer erfolgreichen Umsetzung f��hren k��nnten. Die Circular Economy Initiative Deutschland definiert Ziele f��r diesen Ver��nderungsprozess und fokussiert folgende Themen: - Zirkul��re Gesch��ftsmodelle und digitale Technologien als Innovationstreiber - Neue Wertsch��pfungsnetzwerke f��r Batterien und Verpackung - Rahmenbedingungen f��r eine zirkul��re Transformation und Bemessung der volkswirtschaftlichen Circular-Economy-Potenziale Zwischen Oktober 2019 und Dezember 2020 hat die Arbeitsgruppe Verpackung der Circular Economy Initiative Deutschland ein gemeinsames Zielbild 2030 und Handlungsempfehlungen hin zu einer Kreislaufwirtschaft (CE) f��r Verpackungen entwickelt. Mit einer wertsch��pfungsketten��bergreifenden Betrachtung hat die Arbeitsgruppe Anreiz und Nutzen f��r die Kreislauff��hrung von Verpackungsmaterialien zwischen relevanten Akteuren beleuchtet und dadurch Handlungsoptionen entlang der gesamten Wertsch��pfungskette identifiziert. Damit unterst��tzen die Mitglieder die Initiierung, Umsetzung und langfristige Verankerung der Circular Economy in Deutschland und dar��ber hinaus. Mit 20 Mitgliedsorganisationen der Arbeitsgruppe ���Verpackung��� umfassen die Mitglieder Vertreterinnen und Vertreter aus f��hrenden deutschen Unternehmen, akademischen Institutionen und zivilgesellschaftlichen Vereinigungen ��ber die gesamte Wertsch��pfungskette hinweg. Damit konnte die Arbeitsgruppe ihr Ziel erreichen, eine wissenschaftlich fundierte und m��glichst ganzheitliche Betrachtung des Themas zu gew��hrleisten. Most current patterns of production and consumption follow a linear ���extract, produce, consume, dispose��� model. According to the Circular Gap Report 2020, the global economy is just 9% circular. This economic model is contributing to a massive transgression of ���planetary boundaries��� and the destabilisation of ecosystems and factors essential to human life such as the climate system and biodiversity. As a result, there is currently much discussion of a paradigm shift in the industrial value creation model, away from a resource-intensive system and towards a resource-productive, predominantly circular model. This shift offers significant opportunities for an industrialized, exporting nation like Germany ��� ultimately, it entails nothing less than a recasting of the ���Made in Germany��� model. The European Union and several of its member states have already developed strategic plans for the transition to a resource-efficient economic system based on circular economy principles. Non-European countries such as China, Japan and Canada are also following the same fundamental approach. However, Germany has yet to formulate a plan of its own. The Circular Economy Initiative Deutschland (CEID) is a multi-stakeholder initiative involving over fifty institutions from science, industry and civil society that aims to lay the foundations of a plan for Germany. In its interdisciplinary, cross-sectoral working groups, some 130 experts consider how to enable and implement circular economic models, exploring potential fields of application and discussing the conditions that could facilitate successful implementation. The Circular Economy Initiative Deutschland is developing targets for the transition, with a focus on the following themes: - Circular business models and digital technologies as drivers for innovation - New value networks for batteries and packaging - Framework conditions for a circular transformation and assessment of circularity���s economic potential Between October 2019 und December 2020, the Working Group ���Packaging��� of the Circular Economy Initiative Deutschland developed a joint target picture 2030 and recommendations for action for the establishment of a Circular Economy for packaging. With a cross-value chain approach, the Working Group highlighted incentives and benefits for the recycling of packaging materials across relevant stakeholders and thereby identified options for action along the entire value chain. With the report, the members support the initiation, implementation and long-term anchoring of the Circular Economy in Germany and beyond. The 20 members of the Working Group ���Packaging��� are experts from leading academic institutions, German businesses and civil society across the entire packaging value chain. This composition allowed the group to achieve its goal of addressing the topic as holistically as possible.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Weltweit spielen Großstaudämme eine immer wichtigere Rolle für die »erneuerbare« Energieversorgung und in den vielen Trockengebieten der Erde für die Bewässerung und Ausweitung der Landwirtschaft. Einige neuere Staudämme sind spektakuläre Riesenprojekte. Großstaudammprojekte sind aber inzwischen sehr umstritten, sie sind Konfliktherde; sie verändern die Landnutzung diametral, sie vertreiben die eingesessene Bevölkerung und zerstören deren Lebensgrundlagen. Die ökologischen und ökonomischen Auswirkungen sind nicht nur positiv, sondern sie weisen in erheblichem Maße auch negative Folgen auf. Dazu kommt, dass Staudamm und Nutzung der Wasserspeicher auch nur eine begrenzte Zeit möglich ist. Large water dams for energy generation and irrigation and its social problems: An introduction: Large dams play an increasingly important role worldwide for the renewable energy supply and in the many arid regions of the world for irrigation and the expansion of agriculture. Some of the newer dams are spectacular giant projects. Large dam projects are now very controversial, they are sources of conflicts; they change land use diametrically, they drive out the local population and destroy their livelihoods. The ecological and economic effects are not only positive, they also have negative consequences to a considerable extent. In addition, the dam and the use of the water reservoir are only possible for a limited time. Grandes represas para la generación de energía y proyectos de irrigación y sus conflictos sociales: Una introduccion: Las grandes represas desempeñan un papel cada vez más importante en todo el mundo en la producción de energia »renovable« y en las muchas regiones áridas del mundo para mejorar el riego y la expansión agricola. Algunas de las represas más nuevas son proyectos gigantescos. Muchos proyectos de represas tienen sus lados negativos y son fuentes de conflictos; cambian diametralmente el uso de la tierra, conducen al desalojos de la población local y destruyen sus fuentes de trabajo, también los efectos eco­lógicos y económicos son en gran medida negativos. Además el uso de las represan tienen un tiempo limitado y su desmontaje es costoso.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/wa...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.25592/uh...
    Part of book or chapter of book . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Part of book or chapter of book . 2021
    Data sources: B2FIND
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://dx.doi.org/1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/wa...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.25592/uh...
      Part of book or chapter of book . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Part of book or chapter of book . 2021
      Data sources: B2FIND
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Suncana, Novosel; Christian, Prangenberg; Dieter C, Wirtz; Christof, Burger; +2 Authors

    Surgery as an important part of the healthcare sector contributes to environmental pollution and therefore to the climate crisis. The aim of this review is to create an overview of the current data situation and possibilities for improvement.A literature search was performed in PubMed/MEDLINE using the following five terms: "carbon footprint and surgery", "climate change and surgery", "waste and surgery" and "greening the operating room" focusing on energy, waste, water and anesthesia.The greatest part of emissions in surgery is generated by the use of energy. The operating rooms (OR) need 3-6 times more energy than the other hospital rooms. Of the total hospital waste 20-30% is produced during operations, which is particularly due to the increasing use of disposable articles and 50-90% of waste classified as hazardous is incorrectly sorted. The disposal of this waste is not only more environmentally harmful but also much more expensive. The processing of surgical items by autoclaving consumes large amounts of water. Modern sterilization methods, for example using plasma could be future alternatives. Up to 20% of volatile nonmetabolized anesthetic agents are vented into the stratosphere and destroy the ozone layer. Intravenous anesthetic drugs should be used whenever possible instead. The choice of operating method can also contribute to the environmental impact of an operation.The surgical disciplines are a relevant producer of environmental pollutants. Through diverse interdisciplinary approaches surgery can also contribute to protecting the environment.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Schmutz, S.; Jungwirth, M.; Ratschan, C.; Siemens M. V.; +33 Authors

    Originally, the Danube salmon (Hucho hucho) occurred in Bavaria and Austria in more than 250 rivers occupying more than 7,400 km of rivers. Nowadays, populations in »very good« and »good« status exist in only 0.7 % and 7.1 % of the original distribution. Therefore, the Danube salmon is classified as an endangered species. Due to ongoing stock declines the Danube salmon is running the risk to become a critically endangered species soon. The main reasons for the declines are river channelization and hydropower development. In addition, climate change may further contribute to stock declines in lowland river sections due to exceedance of water temperature limits of this cold-water species. Furthermore, Danube salmon and prey fish populations have lost their resilience to cope with re-established populations of fish predators (cormorant, goosander, fish otter) leading to ongoing population declines. Effective protection against further degradations such as new hydropower developments is required to safeguard the Danube salmon remaining populations. Furthermore, degraded rivers need to be restored and fish predators have to be managed to allow recovery of Danube salmon and prey fish populations. Due to the precarious situation conservation and restoration actions have to be implemented immediately.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Article . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility831
    visibilityviews831
    downloaddownloads740
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Article . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Daria, Luschkova; Alika, Ludwig; Claudia, Traidl-Hoffmann;

    The climate crisis and its consequences represent the greatest challenge facing human health and health care system in the 21st century. It threatens to undermine the last decades of health gains. Rising temperatures, fires, floods and droughts can directly and indirectly cause human pathologies, that are physical and mental. Extreme weather events lead to loss of life, basic life resources and cause severe mental burden. More intense and frequent heat waves due to global warming impact human health and increase mortality, especially for those most vulnerable. The heat-related health risk depends on individual state of health as well as environmental and socioeconomic characteristics of residential areas. Increasing exposure to air pollutants, due to wildfires and anthropogenic emissions, raises respiratory and cardiovascular mortality. Climate warming changes ecosystems and enhances biological invasions that can better adapt to warm environments. Pathogen profiles are changing, transmission and spread of vector-borne diseases as Malaria or Dengue are increasing. Further, rising temperatures and air pollution increase the production and allergenicity of pollen, associated with higher prevalence of allergic diseases. Protective environmental factors, as biodiversity or diverse microbiome, should be given greater consideration in future research.Health sector has the central responsibility as the fifth-largest greenhouse gas emitter to transform in a climate-neutral and sustainable way, e. g. by efficient use of resources. Further education and training in this area should be intensified and included in curricula for medical staff. Furthermore, medical professionals must educate patients about the burden of climate change, climate resilience, and the benefits of CO2 reduction - for human but also for planetary health.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Bernhardt, Jacob Jeff; Rolfes, Lennart; Kreins, Peter; Henseler, Martin; +4 Authors

    The challenges associated with ongoing climate change will pose major challenges for global agriculture in the future and require well thought-out adaptation strategies. Thus, adaptation of water management is one of the major tasks to be tackled. Changes in the monthly water balance and precipitation depths and their intra-annual shift in favor of the winter half-year, as well as increasing evaporation rates, indicate that the availability of water is an limited production factor. These global changes can also be considered on a regional scale and are consequently also of high relevance in Germany. The regional representation of the scenario succeeds on the basis of the core ensemble of the German Weather Service (DWD). Based on these climate projections, the irrigation demand of Bavaria's agriculture is calculated in a model simulation. The model results are subdivided into arable crops, vegetable crops and special crops. Studies on irrigation demand done in the past at the Thünen Institute form the basis of the model development, which has been continuously optimized in the course of the project. The model approach is based on the principle of Geisenheim irrigation management where soil and crop-specific characteristics are used in addition to climate data to differentiate plants water requirements. This information is combined with spatial data on agricultural land use in Bavaria in order to estimate regional irrigation demands. In this study, the irrigation demands of Bavarian agriculture are simulated for the periods 1991– 2020 (ex-post period) and 2021–2050 (future). The mean irrigation demand of all considered crops increases, comparing the two observation periods. By 2050 the mean annual water demand is expected to increase by 19 %. Differentiated by land use classes, Bavaria's irrigation demand increases by 19 % in arable farming, by 23 % in vegetable growing and by 10 % in the cultivation of special crops. However, annual fluctuations in climatic conditions can lead to significant deviations from the mean trend. The spatial analysis of the model results displays a high degree of correspondence with the current irrigation regions of Bavaria. Thus, a high water demand of agriculture can be identified by the model in the regions Knoblauchsland, the wine-growing regions of Lower Franconia, the areas south of Regensburg and north of Augsburg. The model developed in this study has a high sensitivity to the input parameters and allows simulations of different time periods and study areas. The methodology could be improved and further developed. Also, the transferability to other projects and issues is given. DOI:10.3220/REP1657029754000

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Möstl, Daniel;

    Bei der biologischen Abwasserreinigung anfallende Schlämme müssen, um sie lagerfähig zu machen und Geruchsemissionen zu vermeiden, aerob (durch Belüften) oder anaerob (durch Faulung unter Sauerstoffausschluss) stabilisiert werden. Der in Kläranlagen anfallende Rohschlamm, eine Mischung aus Primär- und Sekundär- (Überschuss)schlamm, wird im zweiten Fall unter anaeroben Bedingungen bei etwa 38°C umgesetzt. Das dabei entstehende Gas besteht in etwa aus zwei Dritteln Methan (CH4) und einem Drittel Kohlenstoffdioxid (CO2), sowie Schwefelwasserstoff (H2S), Wasserdampf und Spurengasen.Für die Verwendung als Treibstoff für Fahrzeuge oder die Einleitung in das Gasnetzwerk sind jedoch höhere Methangehalte vonnöten. Um dies zu bewerkstelligen, kann dem Faulturm ein Rieselbett nachgeschaltet werden, in welchem das Kohlenstoffdioxid des Biogases mit Wasserstoff (H2) biologisch zu Methan umgesetzt wird. In dieser Arbeit wurde ein Faulgasreaktor im Labormaßstab betrieben. Das dabei ent-standene Produktgas wurde mit Wasserstoff aus einer Druckflasche in ein nachgeschaltetes Rieselbett eingeleitet. Das Rieselbett wurde mit porösen Polyurethanwürfeln als Aufwuchsmaterial für die Bakterien gefüllt, welche die biologische Methanisierung bewerkstelligen, und mit Faulschlamm beimpft. Mit Hilfe einer Pumpe erfolgte die Zirkulation der flüssigen Phase im Rieselbett. Da ein Mangel an essenziellen Spurenelementen bei den anaeroben Bakterien zu einem eingeschränkten Stoffumsatz führen, wurde eine Nährlösung mit unterschiedlichen Spurenelementen hergestellt und zugesetzt. Ziel dieser Arbeit war es, den benötigten Bedarf an Spurenelementen zu ermitteln, um eine gezielte Zugabe der nötigen Chemikalien zu ermöglichen, um in Hinblick auf dieses Kriterium eine Limitierung im Stoffumsatz zu verhindern. Hierfür wurden Proben aus der Rieselflüssigkeit entnommen, welche mit Hilfe einer ICP-OES (inductively coupled plasma optical emission spectrometry) analysiert wurden. Des Weiteren wurde untersucht, ob sich die hydrogenotrophen Methanbildner überwiegend in der Rieselflüssigkeit oder auf den Aufwuchskörpern befinden. Sludge (biosolids) produced during biological wastewater treatment has to be stabilised aerobically (by aeration) or anaerobically (by digestion in the absence of oxygen) for storage and to avoid odour emissions. In the second case, the raw sludge produced in wastewater treatment plants - a mixture of primary and secondary (overflow) sludge - is converted under anaerobic conditions at about 38 °C. The produced gas consists of approximately two-thirds methane (CH4) and one-third carbon dioxide (CO2), as well as hydrogen sulfide (H2S), water vapour and trace gases. However, higher methane contents are required to use biomethane as fuel for vehicles or for direct injection it into the gas network. To accomplish this, a trickle bed can be installed subsequent of the digester, in which the carbon dioxide from the biogas of the digester biologically can be converted with hydrogen (H2) to methane. In this work, a laboratory-scale digester was operated for biogas production. The resulting product gas was introduced with hydrogen into a post reactor trickle bed. The trickle bed was filled with porous polyurethane cubes acting as carrier for the bacteria and inoculated with digested sludge. A pump was used to circulate the trickling liquid. Since deficiencies in essential trace elements lead to limited functionality of the anaerobic bacteria, a nutrient solution with different trace elements was added. The aim of this work is to determine the required amount of trace elements to enable a controlled addition of the necessary chemicals to avoid limiting conditions. For this purpose, samples from the trickle bed liquid were taken and analyzed by ICP-OES (inductively coupled plasma optical emission spectrometry). Furthermore, it was investigated whether the hydrogenotrophic methane producers are located rather in the trickling liquid or on the growth bod-ies.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Klemens Füreder;

    Der Anteil des Energiebedarfs von R��hrwerken auf Belebungsanlagen am Gesamtenergiebedarf von Kl��ranlagen liegt, wie in dieser Arbeit gezeigt werden kann, bei 5 bis 20 %. R��hrwerke standen im Gegensatz zu Bel��ftungssystemen jedoch bisher nicht im zentralen Fokus von Arbeiten zur Energieoptimierung. Ziel dieser Dissertation ist es daher, erstmals einen fundierten ��berblick zum Energiebedarf und Energieoptimierungspotential von R��hrwerken (allgemein: Durchmischungs-Systemen) in Belebungsanlagen vorzulegen. Hierzu wurde eine umfassende Datenbasis von Kl��ranlagen aufgebaut und hinsichtlich folgender Kennzahlen zum Energiebedarf von R��hrwerken ausgewertet: (A) einwohnerspezifischer Energiebedarf Wmix,EW [kWh/EW120/a], (B) Leistungsdichte PR [W/m3], (C) volumen-spezifischer Energiebedarf Wmix,V [Wh/m3/d].Aus der statistischen Analyse des Datenmaterials wurden Zielwerte f��r Wmix,EW und PR abgeleitet und deren praktische Relevanz durch ein umfangreiches Messprogramm auf Gro��anlagen best��tigt. Sowohl Wmix,EW als auch dessen Zielwerte sind indirekt proportional zur mittleren CSB-Zulauffracht. Die Zielwerte von Wmix,EW liegen hierbei zwischen 6,8 kWh/EW120/a (< 5.000 EW120) und 1,3 kWh/EW120/a (> 30.000 EW120). Die Leistungsdichte PR und dessen Zielwerte sind indirekt-proportional zum Beckenvolumen, die Zielwerte von PR liegen zwischen 5,7 W/m3 (��� 200 m3) und 1,1 W/m3 (> 2.000 m3).Die H��he der dritten Kennzahl, des volumenspezifischen Energiebedarfs Wmix,V, h��ngt ma��geblich davon ab, ob ein Becken bel��ftet oder unbel��ftet ist. Bei den bel��fteten Becken der ausgewerteten Datenbasis liegt der Median von Wmix,V bei ca. 45 Wh/m3/d, bei unbel��fteten Becken bei ca. 90 Wh/m3/d.Die Energieoptimierung von R��hrwerken kann grunds��tzliche ��ber zwei Wege erreicht werden: die Reduktion der Leistungsdichte und die Reduktion der t��glichen Laufzeit der R��hrwerke. Die Energiesparoptionen reichen hierbei von einer kontinuierlichen Durch-mischung bei kleinen Leistungsdichten von 1 W/m3 bis zur Durchmischung mittels kurzer, energieintensiver Impulse (Impulsbel��ftung, Impulsr��hren). Folgender Zusammenhang konnte hierzu festgestellt werden: Je k��rzer die t��gliche Dauer des Energieeintrags, desto h��her die einzutragende Leistungsdichte bei vergleichbarem volumenspezifischem Energiebedarf Wmix,V. Bei g��nstigen Bedingungen hinsichtlich Beckenvolumen, Beckengeometrie, Bel��ftung und R��hrwerksposition, kann Wmiv,V in bel��fteten Becken auf < 24 Wh/m3/d reduziert werden.Jegliche Energieoptimierung von R��hrwerken ist letztlich nur dann sinnvoll, wenn folgende Kriterien erf��llt werden: (1) Die R��hrenergieeinsparung darf zu keiner Beeintr��chtigung der Abwassereinigungsaufgaben der Kl��ranlage f��hren; die entscheidenden Kontrollgr����en hierf��r sind: (1a) Sohlgeschwindigkeiten, (1b) Verteilung des TSBB-Gehalts im Belebungsbecken, (1c) Sohlablagerungen, (1d) Denitrifikation. (2) Die R��hrenergieeinsparung muss auch zu einer Energieeinsparung im Gesamtsystem ���R��hrwerke und Bel��ftung��� f��hren; der diesbez��gliche Nachweis kann ��ber vergleichende Sauerstoffzufuhrversuche bei unterschiedlichem Mischenergieeintrag erfolgen. Die praktische Anwendbarkeit der in (1) und (2) angef��hrten Kontrollgr����en und Versuche konnte bei einem umfangreichen Messprogramm auf der Hauptkl��ranlage Wien (HKA Wien) nachgewiesen werden. This work shows that agitators in activated sludge plants consume about 5 to 20 % of the total energy demand of a wastewater treatment plant. However, in contrast to aeration systems, agitators have not been the central focus of energy optimization yet. The aim of this work is therefore to provide a sound overview regarding the current state and the optimization potential of energy consumption of agitators (generally: mixing systems) in activated sludge tanks. For this purpose, a broad and consistent database of operating wastewater treatment plants was set up and evaluated using following agitator energy indicators: (A) inhabitant-specific energy demand Wmix,PE [kWh/PE120/a], (B) power density PD [W/m3], (C) volume-specific energy demand Wmix,V [Wh/m3/d].Based on the statistical analysis of the data set target values were derived for Wmix,PE and PD, the practical feasibility of which was confirmed by an extensive measuring program at large scale. Both Wmix,PE and its target values are indirectly proportional to the average incoming COD load, with target values ranging from 6.8 kWh/PE120/a (< 5,000 PE120) to 1.3 kWh/PE120/a (> 30,000 PE120). Similar results were found for power density: both PD and its target values prove to be indirectly proportional to tank volume, with target values ranging from 5.7 W/m3 (< 200 m3) to 1.1 W/m3 (> 2,000 m3).The value of the third key indicator, volume-specific energy requirement Wmix,V significantly depends on whether the tank is aerated or not. The median of Wmix,V for the aerated tanks is approx. 45 Wh/m3/d, for unaerated tanks approx. is 90 Wh/m3/d.In principle, there are two ways to optimize agitator operation: the reduction of power density and the reduction of daily operating time. Energy saving options range from continuous mixing with low power densities of 1 W/m3 to mixing by means of short, intense energy pulses (impulse aeration, impulse stirring). The following correlation was detected: the shorter the duration of daily energy input, the higher the power density at comparable volume-specific energy demand Wmix,V. Under favorable conditions with respect to tank volume, tank geometry, aeration and agitator position, the mixing energy in aerated tanks can be reduced to < 24 Wh/m3/d.Energy optimization of agitators is only feasible if the following criteria are met: (1) it must not impair the treatment of wastewater itself; the decisive control parameters are (1a) near-ground velocity, (1b) distribution of total suspended solids in the tank, (1c) tank deposits, (1d) denitrification performance. (2) it must lead to energy savings in the overall system "agitators and aeration"; evidence can be provided by comparative oxygen supply tests at different mixing energy inputs. The practical applicability of the control parameters and tests listed in (1) and (2) could be demonstrated in an extensive measurement program at the main wastewater treatment plant Vienna.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert