Powered by OpenAIRE graph
Found an issue? Give us feedback

SPIRAX-SARCO LIMITED

Country: United Kingdom

SPIRAX-SARCO LIMITED

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/K011847/1
    Funder Contribution: 5,213,690 GBP

    The UK is committed to a target of reducing greenhouse gas emissions by 80% before 2050. With over 40% of fossil fuels used for low temperature heating and 16% of electricity used for cooling these are key areas that must be addressed. The vision of our interdisciplinary centre is to develop a portfolio of technologies that will deliver heat and cold cost-effectively and with such high efficiency as to enable the target to be met, and to create well planned and robust Business, Infrastructure and Technology Roadmaps to implementation. Features of our approach to meeting the challenge are: a) Integration of economic, behavioural, policy and capability/skills factors together with the science/technology research to produce solutions that are technically excellent, compatible with and appealing to business, end-users, manufacturers and installers. b) Managing our research efforts in Delivery Temperature Work Packages (DTWPs) (freezing/cooling, space heating, process heat) so that exemplar study solutions will be applicable in more than one sector (e.g. Commercial/Residential, Commercial/Industrial). c) The sub-tasks (projects) of the DTWPs will be assigned to distinct phases: 1st Wave technologies or products will become operational in a 5-10 year timescale, 2nd Wave ideas and concepts for application in the longer term and an important part of the 2050 energy landscape. 1st Wave projects will lead to a demonstration or field trial with an end user and 2nd Wave projects will lead to a proof-of-concept (PoC) assessment. d) Being market and emission-target driven, research will focus on needs and high volume markets that offer large emission reduction potential to maximise impact. Phase 1 (near term) activities must promise high impact in terms of CO2 emissions reduction and technologies that have short turnaround times/high rates of churn will be prioritised. e) A major dissemination network that engages with core industry stakeholders, end users, contractors and SMEs in regular workshops and also works towards a Skills Capability Development Programme to identify the new skills needed by the installers and operators of the future. The SIRACH (Sustainable Innovation in Refrigeration Air Conditioning and Heating) Network will operate at national and international levels to maximise impact and findings will be included in teaching material aimed at the development of tomorrow's engineering professionals. f) To allow the balance and timing of projects to evolve as results are delivered/analysed and to maximise overall value for money and impact of the centre only 50% of requested resources are earmarked in advance. g) Each DTWP will generally involve the complete multidisciplinary team in screening different solutions, then pursuing one or two chosen options to realisation and test. Our consortium brings together four partners: Warwick, Loughborough, Ulster and London South Bank Universities with proven track records in electric and gas heat pumps, refrigeration technology, heat storage as well as policy / regulation, end-user behaviour and business modelling. Industrial, commercial, NGO and regulatory resources and advice will come from major stakeholders such as DECC, Energy Technologies Institute, National Grid, British Gas, Asda, Co-operative Group, Hewlett Packard, Institute of Refrigeration, Northern Ireland Housing Executive. An Advisory Board with representatives from Industry, Government, Commerce, and Energy Providers as well as international representation from centres of excellence in Germany, Italy and Australia will provide guidance. Collaboration (staff/student exchange, sharing of results etc.) with government-funded thermal energy centres in Germany (at Fraunhofer ISE), Italy (PoliMi, Milan) and Australia (CSIRO) clearly demonstrate the international relevance and importance of the topic and will enhance the effectiveness of the international effort to combat climate change.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M008088/1
    Funder Contribution: 611,337 GBP

    It is estimated that heat use (space heating, drying/separation, high/low temperature processing) accounts for over 70% of the total UK industrial energy use. There are significant opportunities for the improved use of low grade heat, particularly from plants which operate in a batching mode, i.e. when waste heat is generated at a different time from when there is a heat demand. The market potential for recoverable heat is estimated to be between 10TWh - 40TWh per annum. Recent developments in energy processing and the need for CO2 reduction have led to a growing interest in using this heat. To maximise the use of recoverable heat and support demand reduction there is a need for intelligent thermal/chemical storage which can be used when required, be upgraded for higher temperature applications or used to offset electricity and/or cooling demand within the plant. This ensures that heat energy which would otherwise be wasted is fully exploited. The project will bring together academic groups with expertise in thermodynamics, heat transfer and energy together with academics in business and our industrial partner, Spirax Sarco, a major UK based but global company who are major suppliers of industrial heating equipment. Our aim is to research and prove new flexible technologies that will be both wanted and used by process industries such as chemicals, paper and food processing. The systems studied will include: 1. Simple storage with later delivery at nominally the same temperature. The use of advanced Phase Change Materials (PCMs) or Thermo-Chemical reactants will give much higher energy densities (i.e. be smaller) than stores using conventional materials. Size can be a critical factor in industrial applications, but attention must also be paid to cost, corrosion issues, health and safety etc. 2. Thermal transformers that can return a fraction of the stored heat at a higher temperature than it went in. This allows some of the waste heat that would otherwise be wasted to be upgraded to steam raising temperatures for re-use. Steam is still the preferred heating medium in many process industries and possible applications are numerous. 3. Variations on Thermo-Chemical storage devices can also deliver a work (electrical) output or refrigeration rather than heat as can PCM stores in conjunction with Organic Rankine Cycles. We intent to prove, compare and contrast the economics and practicability of these options. In addition to proving the technical potential of these systems it will be essential to look at their control strategies and how they can be integrated with real products. This demands a new theoretical approach. When recovering / transferring heat between continuously operating streams the technique of pinch-point analysis is used to maximise the possible quantity of energy recovered. This is much complicated when heat inputs and outputs can be at different times. We will develop a 'temporal pinch-point analysis' to cope with the increased complexity presented. The technologies will have sufficient flexibility to be applied to different size systems and this flexibility will benefit a wide range of potential energy consumers.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T022981/1
    Funder Contribution: 2,004,080 GBP

    The provision of low temperature industrial process heat in 2018 was responsible for over 30% of total industrial primary energy use in the UK. The majority of this, 75%, was produced by burning oil, gas and coal. Low temperature process heat is a major component of energy use in many industrial sectors including food and drink, chemicals and pharmaceuticals, manufacture of metal products and machinery, printing, and textiles. To reduce greenhouse gas emissions associated with low temperature process heat generation and meet UK targets, in the long term, will require a transition to zero carbon electricity, fuels or renewable heat. In the short term this is not feasible. We propose an approach in which heat is more effectively used within the industrial process, and/or exported to meet heat demands in the neighbouring area allowing significant reductions in greenhouse gas emissions per unit industrial production to be achieved and potentially provide an additional revenue source. We are going to perform a programme of research that will help provide a no regrets route through the transition to eventual full decarbonisation. The research consists of, i) fundamental and applied research to cost effectively improve components and systems performance for improved heat recovery, heat storage, heat upgrading, high temperature heat pumping and transporting heat with low loss, and ii) develop new temporal modelling approaches to predict how these technologies can be effectively integrated to utilise heat across a multi-vector energy system and evaluate a transactive modelling platform to address the complexity of how heat can be reutilised economically within energy systems. A series of case studies analysing the potential greenhouse gas reductions and cost benefits and revenues that may be achieved will be undertaken for selected industrial processes including a chemical production facility in Hull, to assess the benefits of i) individual technologies, ii) when optimally integrated within a heating/cooling network, or iii) when combined in a multi-vector energy system.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R045496/1
    Funder Contribution: 5,388,930 GBP

    Lot-NET considers how waste heat streams from industrial or other sources feeding into low temperature heat networks can combine with optimal heat pump and thermal storage technologies to meet the heating and cooling needs of UK buildings and industrial processes. Heating and cooling produces more than one third of the UK's CO2 emissions and represent about 50% of overall energy demand. BEIS have concluded that heat networks could supply up to 20% of building heat demand by 2050. Heat networks have previously used high temperature hot water to serve buildings and processes but now 4th generation networks seek to use much lower temperatures to make more sources available and reduce losses. Lot-NET will go further by integrating low temperature (LT) networks with heat pump technologies and thermal storage to maximise waste and ambient heat utilisation. There are several advantages of using LT heat networks combined with heat pumps: - They can reuse heat currently wasted from a wide variety of sources in urban environments, e.g. data centres, sewage, substation transformers, low grade industrial reject heat. - Small heat pumps at point of use can upgrade temperature for radiators with minimal electricity use and deleterious effect on the electricity grid. - Industrial high temperature waste can be 'multiplied' by thermal heat pumps increasing the energy into the LT network. - By operating the heat network at lower temperatures, system losses are reduced. Heat source availability is often time dependant. Lot-NET will overcome the challenges of time variation and how to apply smart control and implementation strategies. Thermal storage will be incorporated to reduce the peak loads on electricity networks. The wider use of LT heat networks will require appropriate regulation to support both businesses and customers and Lot-NET will both need to inform and be aware of such regulatory changes. The barrier of initial financial investment is supported by BEIS HNIP but the commercial aspects are still crucial to implementation. Thus, the aim of LoT-NET is to prove a cost-effective near-zero emissions solution for heating and cooling that realises the huge potential of waste heat and renewable energies by utilising a combination of a low-cost low-loss flexible heat distribution network together with novel input, output and storage technologies. The objectives are: 1. To develop a spatial and temporal simulation tool that can cope with dynamics, scale effects, efficiency, cost, etc. of the whole system of differing temperature heat sources, distribution network, storage and delivery technologies and will address Urban, Suburban and Exurban areas. 2. To determine the preferred combination of heat capture, storage and distribution technologies that meets system energy, environmental and cost constraints. Step change technologies such a chemical heat transport and combined heat-to-power and power-to-heat technologies will be developed. 3. To design, cost and proof of concept prototype (as appropriate) seven energy transformation technologies in the first two-three years. They consist of both electrically driven Vapour Compression and heat driven Sorption technologies. Priority for further development will be then given to those which have likely future benefits. 4. To determine key end use and business/industry requirements for timely adoption. While the Clean Growth Strategy and the Industrial Strategy Challenge Fund initially support future implementation, innovative business models will reduce costs rapidly for products or services that customers want to buy and use. Thus, engagement with stakeholders and end users to provide evidence of possible business propositions will occur. 5. To demonstrate/validate the integrated technologies applicable to chosen case studies. The range of heating, cooling, transformation and storage technologies studied will be individually laboratory tested interacting with a simulated netw

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P004636/1
    Funder Contribution: 1,642,830 GBP

    The UK Government the EU and the international community in general have ambitious targets for reduction of Greenhouse Gas Emissions (GHG) and Global Warming. Even though emission reduction targets to 2020 are likely to be met by the UK, longer term targets to 2050 and 2100 are unlikely to be met without substantial changes to policy and technological approaches in the generation, distribution and utilisation of energy. Globally, industrial energy use is responsible for 33% of greenhouse gas emissions. In the UK, industrial emissions have reduced in recent years and are now estimated to contribute between 20-25% of total emissions. Approximately 70% of the energy demand of the industrial sector is for heat. All heating processes result in significant quantities of waste heat, up to 50% in some cases, and is widely acknowledged that there is significant potential for heat recovery, estimated at between 18-40 TWh/yr or £0.18-0.4 billion per year at today's energy prices. As yet, most of this potential has remained unexploited due to technical, economic and organisational factors. Other opportunities for energy efficiency and decarbonisation include the optimisation of steam systems that are responsible for 35% of industrial energy use, the use of bioenergy, particularly from organic and other wastes generated on site, and whole industrial site energy integration and optimisation. To exploit the potential offered by energy efficiency, heat recovery and conversion to electrical or thermal energy at a higher or lower temperature and utilise the opportunities offered by waste to energy conversion and energy integration a number of major challenges need to be addressed. These include: i) development and application of technologies for data acquisition at high enough granularity to enable detailed analysis of performance at component, process and system level, ii) methodologies for the optimal design of technologies to provide confidence in their performance at implementation stage, iii) tools for performance analysis and control optimisation in real time, iv) modelling of energy flows at site level to provide optimisation of energy management based on energy, environmental and economic considerations, and iv) investigation and development of business models that overcome barriers and encourage the adoption of new energy efficient and demand reduction technologies. In the OPTEMIN project we aim to address these challenges by working very closely with our key industrial collaborators to: i) understand the major technical, operational and economic issues associated with the acquisition and analysis of large energy data, ii) use the data to gain insights into the complex energy networks, their interactions and impacts in large industrial manufacturing facilities, iii) critically evaluate the performance of new innovative energy demand reduction and energy conversion technologies using data from demonstration installations, iv) investigate drivers and business models that can facilitate their full development and commercialisation, v) develop methodologies and tools to optimise individual process design, whole site energy integration and management and evaluate their decarbonisation potential within the context of Government policies and decarbonisation roadmaps to 2050. The overall objective is to demonstrate through the research programme and fully documented case studies supported by comprehensive data sets, the potential to achieve energy demand and carbon emission reductions in excess of 15%.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.