
Precision Acoustics (United Kingdom)
Precision Acoustics (United Kingdom)
Funder
14 Projects, page 1 of 3
assignment_turned_in Project2019 - 2028Partners:Precision Acoustics (United Kingdom), Stryker International, Zilico Ltd, Polatis (United Kingdom), Xtera Communications Limited +96 partnersPrecision Acoustics (United Kingdom),Stryker International,Zilico Ltd,Polatis (United Kingdom),Xtera Communications Limited,PHOTON DESIGN LIMITED,Waveoptics,Waveoptics,Optalysys Ltd,VividQ,Precision Acoustics (United Kingdom),Precision Acoustics (United Kingdom),Continental (Germany),Plessey Semiconductors Ltd,Xtera Communications Limited,BAE Systems (Sweden),PragmatIC Printing Ltd,Thales Group,PragmatIC Printing Ltd,Oclaro Technology UK,University of Cambridge,Zilico Ltd,Huawei Technologies (UK) Co. Ltd,McWane Technology (United Kingdom),Hitachi Cambridge Laboratory,Chromacity (United Kingdom),Integer Holdings Corporation,Xilinx (Ireland),Oclaro (United Kingdom),Analog Devices Inc (Global),Continental Automotive GmbH,Defence Science & Tech Lab DSTL,Defence Science & Tech Lab DSTL,BT Group (United Kingdom),Hitachi Cambridge Laboratory,HUBER+SUHNER Polatis Ltd,PLESSEY SEMICONDUCTORS LIMITED,Leonardo MW Ltd,Teraview Ltd,Anvil Semiconductors Ltd,Chromacity Ltd.,Airbus Defence and Space,Phasor Solutions Ltd,BT Group (United Kingdom),The Rockley Group UK,Toshiba (United Kingdom),Phasor Solutions Ltd,Xtera Communications Limited,Defence Science & Tech Lab DSTL,Thales Group (UK),UCL,Huawei Technologies (United Kingdom),PervasID Ltd,Leonardo MW Ltd,General Electric (United Kingdom),Stryker International,VividQ,MICROSOFT RESEARCH LIMITED,PHOTON DESIGN LIMITED,British Telecommunications plc,TREL,FAZ Technology Limited,BAE Systems (UK),Zinwave,aXenic Ltd.,TREL,Eight19 Ltd,Defence Science and Technology Laboratory,Hitachi Cambridge Laboratory,Oclaro Technology UK,The Rockley Group UK,Thales Group,PragmatIC (United Kingdom),Eight19 (United Kingdom),Inphenix,PervasID Ltd,Integer Holdings Corporation,FAZ Technology Limited,Inphenix,Eight19 Ltd,Optalysys Ltd,Eblana Photonics (Ireland),TeraView (United Kingdom),MICROSOFT RESEARCH LIMITED,Photon Design (United Kingdom),PLESSEY SEMICONDUCTORS LIMITED,BAE Systems (Sweden),BAE Systems (United Kingdom),Airbus (United Kingdom),Analog Devices,Chromacity Ltd.,Teraview Ltd,Anvil Semiconductors (United Kingdom),Airbus Defence and Space,Xilinx (Ireland),Thales (United Kingdom),aXenic Ltd.,Microsoft Research (United Kingdom),Huawei Technologies (UK) Co. Ltd,Zinwave,Teraview LtdFunder: UK Research and Innovation Project Code: EP/S022139/1Funder Contribution: 5,419,250 GBPThis proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5ca5a8341f366b8cff7b89001dfd3263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2007 - 2013Partners:Precision Acoustics (United Kingdom), Precision Acoustics (United Kingdom), Precision Acoustics (United Kingdom), University of Oxford, Oxonica (United Kingdom) +5 partnersPrecision Acoustics (United Kingdom),Precision Acoustics (United Kingdom),Precision Acoustics (United Kingdom),University of Oxford,Oxonica (United Kingdom),Oxoid Ltd.,Celsion Corporation,Celsion (United States),Celsion Corporation,Oxoid Ltd.Funder: UK Research and Innovation Project Code: EP/F011547/1Funder Contribution: 1,103,170 GBPHigh amplitude ultrasound waves propagating through tissue have been recently reported to induce a range of potentially beneficial phenomena, such as rapid tissue heating, increased permeability of cells to large drug molecules (sonoporation) or enhanced activity of drugs. These bioeffects are heavily correlated with the ultrasound-induced nucleation and subsequent excitation of micron-sized bubbles, yielding two types of acoustic cavitation activity: (1) inertial cavitation, which dramatically increases the energy transfer to tissue and can cause rapid heating and mechanical damage, and (2) stable cavitation, whereby bubbles act as micropumps that dramatically enhance the local mixing and transport length scales of drug molecules. In cancer treatment, local heating combined with chemotherpay will render cancer cells more sensitive to treatment, whilst local micropumping of the drug can help overcome delivery problems arising from the highly complex tumour structure. In the context of breaking down blood clots for stroke therapy, cavitation-enhanced mixing will promote delivery of the drug to a site of low blood flow and greatly increase the diffusion of the thombolyic drug across the clot surface.However, the nucleation of cavitating microbubbles and subsequent interaction with cells in biologically relevant media remain poorly understood. The objectives of the proposed research therefore are (i) to investigate the potential of cell- and site-specific cavitation nucleation using commercially available targeted nanoparticles currently being developed for molecular imaging; (ii) to understand and optimize the mechanism by which ultrasound and cavitation can enhance local drug delivery and drug activity across inaccessible interfaces such as tumours or blood clots; (iii) to develop clinically relevant means of monitoring cavitation activity and exploit them for real-time monitoring of drug delivery and (iv) to test the optimized drug delivery and treatment monitoring protocols in a clinically relevant organ model.It is hoped that the proposed resarch will pave the road for widespread clinical uptake of cavitaiton-enhanced targeted drug delivery by ultrasound. Particular advantages of this technique will include the ability to locally enhance drug activity, thus reducing the necessary drug dosages and their side effects, and to monitor therapy in real time. The outcomes of the proposed research are expected to be directly transferable to many other novel therapeutic ultrasound applications, such as non-invasive tissue ablation by High-Intensity Focussed Ultrasound (HIFU), acoustic haemostasis and ultrasound-induced opening of the blood-brain barrier for transcranial drug delivery.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3f3240229a07f8562df0234ccdb536cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3f3240229a07f8562df0234ccdb536cd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2018Partners:Merlin Circuits, Weidlinger Associates, Semefab Scotland Ltd, AFM, University of Glasgow +15 partnersMerlin Circuits,Weidlinger Associates,Semefab Scotland Ltd,AFM,University of Glasgow,Weidlinger Associates,University of Glasgow,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,Diagnostic Sonar (United Kingdom),Semefab Scotland Ltd,Precision Acoustics (United Kingdom),Disco (Germany),Precision Acoustics (United Kingdom),Disco Hi-Tec Europe Gmbh,NPL,Diagnostic Sonar (United Kingdom),AFM,Merlin Circuits,NATIONAL INSTRUMENTS CORPORATION(UK) LIMITED,NPLFunder: UK Research and Innovation Project Code: EP/K034537/2Funder Contribution: 3,210,630 GBPCapsule endoscopy for medical diagnosis in the gastrointestinal (GI) tract has emerged only in the past 10 years. Now established in "pillcams", which have benefitted more than 1 m patients worldwide, it is a clear candidate for further innovation. Most capsule endoscopy devices record and transmit video data representing the visual appearance of the inside of the gut, but work has begun on other diagnostic techniques, such as the measurement of pH, and there has been some research into the use of capsules for treatment as well. Medical ultrasound imaging is a safe, inexpensive technique which can be applied in real-time at the point of care. Ultrasound is also capable of treatment through focused ultrasound surgery and, in research, for targeted drug delivery. The core of the Sonopill programme is the exploration of ultrasound imaging and therapeutic capabilities deployed in capsule format. This will be supported by extensive pre-clinical work to demonstrate the complementary nature of ultrasound and visual imaging, along with studies of multimodal diagnosis and therapy, and of mechanisms to control the motion of the Sonopill as it travels through the GI tract. This brings research challenges and opportunities in areas including ultrasound device and systems design, microengineering and microelectronic packaging, autonomous capsule positioning, sensor suites for diagnosis and intervention, and routes to translation into clinical practice. Our carefully structured but open-ended approach maximises the possibility to meet these research challenges while delivering for the UK a sustainable international lead in multimodality capsule endoscopy, to provide greater capabilities for the clinician, more acceptable practice for the patient population, and lower costs for economic wellbeing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a715603a47b8fc19d74ff4e67c1cfbb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a715603a47b8fc19d74ff4e67c1cfbb7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:MR Solutions Limited, Eli Lilly and Company Limited, Shimadzu Corp., MS, Direct Conversion GmbH +110 partnersMR Solutions Limited,Eli Lilly and Company Limited,Shimadzu Corp.,MS,Direct Conversion GmbH,Perceive3D,Scintacor Ltd,CYSTIC FIBROSIS TRUST,Mediso,SIEMENS PLC,Brain Products GmbH,Elekta UK Ltd,Nikon (United Kingdom),Alzheimer’s Research UK,Vision RT Ltd,Mirada Medical UK,Cystic Fibrosis Trust,Great Ormond Street Hospital Children's Charity,Direct Conversion GmbH,Digital Surgery,Alzheimer's Society,Mediso,Gold Standard Phantoms,SmartTarget Ltd,Mirada Medical (United Kingdom),GlaxoSmithKline PLC,National Physical Laboratory,Precision Acoustics (United Kingdom),Intuitive Surgical Inc,Max-Planck-Gymnasium,Motor Neurone Disease Association,Nikon Metrology UK Ltd,Intuitive Surgical Inc,SIEMENS PLC,Bruker UK Ltd,Indigo Scientific Ltd,GSK,Siemens (United Kingdom),IXICO Ltd,Shimadzu (Japan),The Rosalind Franklin Institute,Great Ormond Street Hospital Children's Charity,Philips Healthcare,Fujifilm Visualsonics Inc,Brain Products GmbH,Vision RT Ltd,SU,Alzheimer's Society,Bruker UK Ltd,Stanford University,UCL Hospitals NHS Foundation Trust,NPL,Max Planck Institutes,icoMetrix,Max-Planck-Gymnasium,RCaH,University College London Hospital (UCLH) NHS Foundation Trust,Precision Acoustics (United Kingdom),Philips Healthcare (Global),Gold Standard Phantoms,Alzheimer's Society,UCL,Creatv MicroTech (United States),GE Healthcare,Digital Surgery,Nikon Metrology UK Ltd,QMENTA Imaging SL,General Electric (United Kingdom),COSMONiO Ltd,Moorfields Eye Hospital NHS Foundation Trust,MS,Shimadzu Corp.,Great Ormond Street Hospital,Great Ormond Street Hospital for Children NHS Foundation Trust,Philips (Netherlands),Vision RT Ltd,Stanford University Medical School,Perceive3D,Rigaku (United States),Siemens PLC,Biogen,Icometrix (Belgium),Eli Lilly and Company Limited,Rigaku,Creatv MicroTech (United States),Eli Lilly (United Kingdom),Multiple Sclerosis Society,IXICO Technologies Ltd,GlaxoSmithKline (United Kingdom),University College London Hospital (UCLH) NHS Foundation Trust,GE Healthcare,MR Solutions Limited,SmartTarget Ltd,Elekta (United Kingdom),Moorfields Eye NHS Foundation Trust,Fujifilm Visualsonics Inc,Rosalind Franklin Institute,Scintacor Ltd,Moorfields Eye NHS Foundation Trust,Indigo Scientific Ltd,Visulytix Ltd,IXICO Ltd,Motor Neurone Disease Association,Biogen,Bruker UK Ltd,QMENTA Imaging SL,Visulytix Ltd,Research Complex at Harwell,NPL,Cystic Fibrosis Trust,Precision Acoustics (United Kingdom),COSMONiO Ltd,Alzheimer's Research UK,Creatv MicroTech (United States),Bruker (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S021930/1Funder Contribution: 6,034,270 GBPWe propose to create the EPSRC Centre for Doctoral Training (CDT) in intelligent integrated imaging in healthcare (i4health) at University College London (UCL). Our aim is to nurture the UK's future leaders in next-generation medical imaging research, development and enterprise, equipping them to produce future disruptive healthcare innovations either focused on or including imaging. Building on the success of our current CDT in Medical Imaging, the new CDT will focus on an exciting new vision: to unlock the full potential of medical imaging by harnessing new associated transformative technologies enabling us to consider medical imaging as a component within integrated healthcare systems. We retain a focus on medical imaging technology - from basic imaging technologies (devices and hardware, imaging physics, acquisition and reconstruction), through image computing (image analysis and computational modeling), to integrated image-based systems (diagnostic and interventional systems) - topics we have developed world-leading capability and expertise on over the last decade. Beyond this, the new initiative in i4health is to capitalise on UCL's unique combination of strengths in four complementary areas: 1) machine learning and AI; 2) data science and health informatics; 3) robotics and sensing; 4) human-computer interaction (HCI). Furthermore, we frame this research training and development in a range of clinical areas including areas in which UCL is internationally leading, as well as areas where we have up-and-coming capability that the i4health CDT can help bring to fruition: cancer imaging, cardiovascular imaging, imaging infection and inflammation, neuroimaging, ophthalmology imaging, pediatric and perinatal imaging. This unique combination of engineering and clinical skills and context will provide trainees with the essential capabilities for realizing future image-based technologies. That will rely on joint modelling of imaging and non-imaging data to integrate diverse sources of information, understanding of hardware the produces or uses images, consideration of user interaction with image-based information, and a deep understanding of clinical and biomedical aims and requirements, as well as an ability to consider research and development from the perspective of responsible innovation. Building on our proven track record, we will attract the very best aspiring young minds, equipping them with essential training in imaging and computational sciences as well as clinical context and entrepreneurship. We will provide a world-class research environment and mentorship producing a critical mass of future scientists and engineers poised to develop and translate cutting-edge engineering solutions to the most pressing healthcare challenges.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3d6c1ad67933256e267346d145bf8ee3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3d6c1ad67933256e267346d145bf8ee3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2024Partners:Institute of Acoustics, Carbon Air Limited, Qioptiq Ltd, Arup Group (United Kingdom), Defence Science & Tech Lab DSTL +96 partnersInstitute of Acoustics,Carbon Air Limited,Qioptiq Ltd,Arup Group (United Kingdom),Defence Science & Tech Lab DSTL,Department for Environment Food and Rural Affairs,Comsol (United Kingdom),GlaxoSmithKline PLC,National Physical Laboratory,DEFRA,Dragonfly Insulation Ltd,EA,Precision Acoustics (United Kingdom),ENVIRONMENT AGENCY,Natural England,Arup Group,Matelys Research Lab,Precision Acoustics (United Kingdom),EA,AECOM,Natural England,Aquatec Group,Apex Acoustics Ltd,Natural England,Meridian Audio Ltd,John Cotton Group Ltd,Hoare Lea Ltd,SeeByte Ltd,RNIB,Jasco Applied Sciences (UK) Ltd,Hampshire Technology Centre Trust Ltd,Aquatec Group,SBT,Defence Science and Technology Laboratory,DEFRA Westminster,Aecom (United Kingdom),Acoustics and Noise Consultants,[no title available],Institute of Mathematics and its Applications,Thales UK Limited,Carbon Air Limited,General Dynamics (United Kingdom),Campbell Associates,Environment Agency,AWE,Royal Academy of Music,Seiche Ltd,Comsol Ltd,Defence Science & Tech Lab DSTL,Arup Group Ltd,Qinetiq (United Kingdom),Institute of Acoustics,Winchester Science Centre,RNID (Royal Natnl Inst for Deaf People),Campbell Associates,Systems Engineering and Assessment Ltd.,Matelys Research Lab,University of Sheffield,RS Aqua Ltd,Systems Engineering and Assessment Ltd.,NPL,Jasco Applied Sciences (UK) Ltd,Meridian Audio Ltd,Acoustics and Noise Consultants,Hoare Lea Ltd,Royal Academy of Music,GSK,Mvoid Technologies GmbH,GlaxoSmithKline (United Kingdom),Atomic Weapons Establishment,Arup Group Ltd,Mvoid Technologies GmbH,Hoare Lea (United Kingdom),British Tinnitus Association (BTA),Seiche Ltd,Thales (United Kingdom),The Noise Abatement Society,Defence Science & Tech Lab DSTL,Institute of Mathematics and its Applica,Comsol Ltd,Apex Acoustics Ltd,Action on Hearing Loss,John Cotton Group Ltd,Hampshire Technology Centre Trust Ltd,THALES UK LIMITED,Systems Engineering and Assessment (United Kingdom),Dragonfly Insulation Ltd,University of Sheffield,British Tinnitus Association (BTA),RNID,Royal Academy of Music,NPL,DEFRA Westminster,RS Aqua Ltd,HMG,Noise Abatement Society,British Tinnitus Association,SBT,Qioptiq Ltd,Precision Acoustics (United Kingdom),Hoare Lea LtdFunder: UK Research and Innovation Project Code: EP/V007866/1Funder Contribution: 1,418,890 GBPThe acoustics industry contributes £4.6 billion to the UK's economy annually, employing more than 16,000 people, each generating over £65,000 in gross value added across over 750 companies nationwide. The productivity of acoustics industry is similar to that of other enabling technologies, for example the UK photonics industry (£62k per employee in 2014). Innovation through research in acoustics is a key to its industry success. The UK's acoustics industry and research feeds into many major global markets, including the $10 billion market for sound insulation materials in construction, $7.6 billion ultrasound equipment market and $31 billion market for voice recognition. This is before the vital role of acoustics in automotive, aerospace, marine and defence is taken into consideration, or that of the major UK industries that leverage acoustics expertise, or the indirect environmental and societal value of acoustics is considered. All the four Grand Challenges identified in the 2017 UK Industrial Strategy require acoustics innovation. The Industrial Strategy Challenge Fund (ISCF, https://www.ukri.org/innovation/industrial-strategychallenge-fund/) focuses on areas all of which need support from acoustics as an enabling technology. The future of acoustics research in the UK depends on its ability to contribute to the Four Grand Challenges. Numerous examples are emerging to demonstrate the central role of acoustics in addressing the four Grand Challenges and particularly through more focused research. The acoustics-related research base in the UK is internationally competitive, but it is important to continue to link this research directly to the four Grand Challenges. In this process, the role of UK Acoustics Network (UKAN) is very important. The Network unites over 870 members organised in 15 Special Interest Groups (www.acoustics.ac.uk) who represent industry, academia and various non-academic organisations which success relies on the quality of acoustics related research in the UK. UKAN was funded by the EPSRC as a standard Network grant with the explicit aim of pulling together the formerly disparate and disjoint acoustics community in the UK, across both industry and academia. UKAN has been remarkably successful. Its success is manifested in the large number of its members, numerous network events it has run since its inception in November 2017 and contribution it has made to the acoustics research community. Unfortunately, UKAN has not been in the position to fund new, pilot adventurous or translational projects nor has it any funding support for on-going research or knowledge transfer (KT) activities. The purpose of UKAN+ is to move beyond UKAN, create strategic connections between acoustics challenges and the Grand Challenges and to tackle these challenges through pilot studies leading in turn to full-scale grant proposals and systematic research and KT projects involving a wider acoustics community. There is a great opportunity for the future of the UK's acoustics related research to move on beyond this point, build upon the assembled critical mass and explore the trans-disciplinary work initiated by UKAN. Therefore, this proposal is for UKAN+ to take this community to the next stage, connect this Network more widely in the UK and internationally to contribute through coordinated research to the solution of Grand Challenges set by the government. UKAN+ will develop a new roadmap for acoustics research in the UK related to Grand Challenges, award exploratory (pilot) cross-disciplinary research projects to the wider community to support adventure research and knowledge transfer activities agreed in the roadmap and support the development of develop full-scale bids to the government research funding bodies which are aligned with the Grand Challenges. UKAN+ will also set up a National Centre or Coordination of Acoustics Research, achieve full sustainability and support best Equality, Diversity and Inclusion practices.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6235c82b626ab4f8aff6355528b20f56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6235c82b626ab4f8aff6355528b20f56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right