Powered by OpenAIRE graph
Found an issue? Give us feedback

DEMCON

DEMCON ADVANCED MECHATRONICS BV
Country: Netherlands
11 Projects, page 1 of 3
  • Funder: European Commission Project Code: 325613
    more_vert
  • Funder: European Commission Project Code: 101016070
    Overall Budget: 6,274,040 EURFunder Contribution: 5,374,140 EUR

    CO-VERSATILE aims at increasing the adaptation capacity, resilience and flexibility of the European manufacturing sector, focussing on vital medical supplies and equipment, to support Europe in improving its response and preparedness to deal with pandemics. CO-VERSATILE builds upon research and innovation industry-driven initiatives to deliver demonstrators of a flexible 48-hour industrial response capability at scale, to cope with sudden spikes in demand of strategic products, for requalification or release of Manufacturing Settings. The project foresees four key objectives: - Deliver a rapid response to the ongoing emergency situation in the re-orientation and repurposing of production capacities through repurposed MVP for 7 manufacturing settings at M2 of the project and improved results iteratively delivered every 3 months after that, allowing an increased production capacity of vital medical supplies and equipment. Manufacturing settings outside the project will start having access to the project results at M6 of the project through a digital platform - Set up an accessible and democratic Digital Technopole for the re-orientation and repurposing of production capacities to meet the urgent needs of our societies for vital medical supplies and equipment, consisting of 5 operational building blocks. - Validate the proper operation of the Digital Technopole on 7 selected Manufacturing Settings to demonstrate a flexible 48-hour industrial response capability at scale, to ramp up production in response to sudden future spikes in demand of strategic products (for instance medical equipment such as PPE, respirators), for requalification or release of production lines. - Ensure the sustainability of the Digital Technopole and the multiplication of the offered services to the European Manufacturing Industry to achieve wide replication.

    more_vert
  • Funder: European Commission Project Code: 101070115
    Overall Budget: 3,164,840 EURFunder Contribution: 2,400,140 EUR

    The European water network distribution is plagued by leaks that cause a staggering 20% of drinking water to go wasted. This is an environmental disaster given that water and sanitation sector is currently estimated to contribute up to 5% of global GHG emissions. Water utilities are struggling with this problem however the deadalic nature of water networks make manual inspections and repairs completely non-viable. Technology-based solutions have significant limitations in terms of measurement accuracy and leak localisation. Most importantly they do not encompass repair. TUBERS sets forth a new paradigm by creating the world’s first combination robotic platforms allowing for 24/7 inspection and targeted in-situ repairs, greatly reducing the costs of regular inspection and maintenance. The system will comprise: (a) A snake-like resident robot which can operate over long distances and negotiate pipeline-junctions to navigate large parts of the water network, (2) A modular soft-robotic platform capable of moving using an “inchworm” movement technique, for inspections and repairs of pipe segments featuring a novel repair deployment mechanism (3) A High-accuracy inspection system that can detect leaks and, most importantly, measure corrosion based on coded excitation, an advanced technique that greatly improves Signal-to-Noise ratio, (4) A Decision Support System powered by Explainable Machine Learning algorithms incorporating a Multi-Criteria Decision Analysis framework for holistic planning of inspection and maintenance. The TUBERS solution will be validated in real water network pipelines operated by 3 of the most prominent water utility companies in the Netherlands. Once it reaches the market, our solution is poised to revolutionise inspection and repair of drinking water networks, providing the operators with powerful tools to eliminate waste, facilitating savings of an estimated 158GWh of energy and reduction of 79.000 tonnes of CO2 emissions within a 5-year period.

    more_vert
  • Funder: European Commission Project Code: 101093150
    Overall Budget: 4,430,520 EURFunder Contribution: 4,430,520 EUR

    The bioreactor industry is currently flourishing with a global market valued estimated at 2.3 B€ in 2020 and predicted to exceed 6.6 B€ euro by 2030, growing at a rate of 10.7% CAGR. Despite this impressive growth, there are challenges which can significantly impede the further advancement of bioreactors: Bioproducts can be sustainable and competitive only if reliable and contamination-free production is ensured. Currently, there is no catholic solution to this issue. To this end, LIBRA project introduces a benchtop smart multi-sensing system for the in-line automatable screening of cultivation processes in bioreactors. The LIBRA sensing technology lies in the use of light based integrated on-chip, real time sensors. A novel integration procedure of the photonic platforms together with disposable microfluidic modules and biofunctionalization units will result in a modular system with interchangeable components enabling the screening of nutrients and pathogens in bioreactor samples, according to the end users need. Furthermore, the LIBRA system will be able to be attached and integrated to various bioreactor systems regardless of their form factors, spanning from stirred tank bioreactors to single use bioreactors (SUB). To achieve this, LIBRA will rely on a highly multi-disciplinary consortium comprising expertise and specialization in several fields spanning photonics, surface functionalization, microfluidics, advanced packaging and assembly, artificial intelligence and bioreactor manufacturers. The exploitable results of LIBRA are expected to disrupt the current PIC-based sensing landscape, as estimated by the two business cases stemming from the project: the market revenues one year after the end of this project are expected to be €7.8 million growing to almost €59 million in 2032, and plethora of new IP and new business opportunities for the partners involved in the joint venture of LIBRA.

    more_vert
  • Funder: European Commission Project Code: 662338
    Overall Budget: 177,732,000 EURFunder Contribution: 31,816,400 EUR

    The SeNaTe project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 12nm and 10nm technology nodes. The main objective is the demonstration of the 7nm IC technology integration in line with the industry needs and the ITRS roadmap on real devices in the Advanced Patterning Center at imec using innovative device architecture and comprising demonstration of a lithographic platform for EUV and immersion technology, advanced process and holistic metrology platforms, new materials and mask infrastructure. A lithography scanner will be developed based on EUV technology to achieve the 7nm module patterning specification. Metrology platforms need to be qualified for N7’s 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 7nm technology modules a large number of new materials will need to be introduced. The introduction of these new materials brings challenges for all involved processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch, clean and planarization steps will be studied. Major European stakeholders in EUV mask development will collaboratively work together on a number of key remaining EUV mask issues. The first two years of the project will be dedicated to find the best options for patterning, device performance, and integration. In the last year a full N7 integration with electrical measurements will be performed to enable the validation of the 7nm process options for a High Volume Manufacturing. The SeNaTe project relates to the ECSEL work program topic Process technologies – More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 7nm resolution in high-volume manufacturing and fast prototyping.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.