Powered by OpenAIRE graph
Found an issue? Give us feedback

AT

ARGOTECH AS
Country: Czech Republic
17 Projects, page 1 of 4
  • Funder: European Commission Project Code: 101093166
    Overall Budget: 3,738,060 EURFunder Contribution: 3,689,510 EUR

    AMBROSIA aims to provide the foundations for a multi-sensing future-proof Point of Care Unit for sepsis diagnosis offered by a CMOS compatible toolkit and enhanced by on-chip photonic neural network technology to provide an accurate and rapid diagnosis. AMBROSIA will be investing in the established ultra-small-footprint and elevated sensitivity of integrated plasmo-photonic sensors reinforced by the well-known on-chip slow-light effect and micro-transfer printed lasers and photodiodes on Si3N4, as well as the functional processing and classification portfolio of integrated photonic neural network engines, towards painting the landscape of the next-coming disruption in sensor evolution, tailoring them in System-in-Package prototype assemblies, with the sensors being cheap disposable pluggable modules that can rapidly and accurately diagnose sepsis at the bedside in clinical environments. AMBROSIA targets to demonstrate a Point of Care Unit incorporating: i) a switchable sensor area array, with each sensor area facilitating a pluggable, 8-channel label-free plasmo-photonic sensor for sepsis diagnosis with a sensitivity over 130.000nm/RIU and a Limit of Detection below 10-8 RIU for each interferometric sensor, ii) an embedded Si3N4 photonic neural network processing and classifying at the same time the data from at least 7 biomarkers with zero-power providing in the first minutes an accurate and rapid diagnosis for sepsis, iii) Micro-transfer printed lasers and photodetectors on chip that will drastically decrease costs of both the sensing and neural network modules, and render the sensor arrays disposable.

    more_vert
  • Funder: European Commission Project Code: 871875
    Overall Budget: 5,962,310 EURFunder Contribution: 5,089,280 EUR

    SEER aims to develop smart self-monitoring composite tools, able to measure process and material parameters and, thus, to provide real-time process control with unprecedented reliability. SEER consortium will achieve this by: 1) developing miniature photonic sensors, 2) embedding those sensors in the tool with through-the-thickness techniques which minimise alteration of the structural integrity of the tool itself and 3) optimising the manufacturing control system through the implementation of a prototype process monitoring, optimisation, and process control unit. SEER will adopt a multi-sensor approach that will comprise a temperature, a refractive index, and a pressure sensor, operating in the near infrared and all integrated on a miniature photonic integrated circuit (PIC). The SEER solution will be compatible with and optimise existing composite manufacturing methods and its reuse for several resin curing cycles will increase efficiency and save resources. The embedded PIC sensors in a reusable tool will cater perfectly to address pre-processing and will use acquired raw data for process optimisation, using theoretical models and machine learning algorithms, establishing for each tool a link between the sensor data, material state models, process parameters, as well as degradation of the tool. This will allow efficient preventive maintenance of the tool with less effort and provide insight on better tool design. Finally, the acquired data from quality testing of cured parts will be used to optimise the process control ensuring further enhance in the quality yield and will provide with a part quality fingerprint.

    more_vert
  • Funder: European Commission Project Code: 101093008
    Overall Budget: 4,999,300 EURFunder Contribution: 4,999,300 EUR

    Photonics-based sensing in the mid-IR been proven to be the key technology for highly efficient sensing in a plethora of applications ranging from environmental monitoring to industrial process control, medical diagnostics, water quality, safety applications, medical and more. Related to other sensing approaches, mid-IR spectroscopy-based sensing enables the fast, reliable, and consumables/maintenance-free operation for the detection of trace amounts (even in the sub-ppb range) to high concentration of the targeted analytes. The interest in the technology has been significantly increased due to the maturing of the Quantum Cascade Lasers (QCLs). QCLs offer an up to 2-orders of magnitude enhancement in the signal-to-noise ratio while enabling the direct access to the characteristic molecular fingerprint region of the targeted analytes. M3NIR develops very innovative (currently at TRL2) mid-IR sensing approaches to significantly boost the technology in terms of performance (low limit of detection, multiple-species detection), footprint (co-integrating of lasers and components) reduction of energy consumption and cost. For the latest two, M3NIR implements detector-free sensing by means of the self-mixing detection scheme. Moreover, the combination of mid-IR and near-IR components in photothermal sensing is yet another approach for the implementation of miniaturised, energy efficient and low-cost advanced sensory system. To accomplish its goals, M3NIR co-integrates advanced electronics and data processing units in the systems as well. M3NIR demonstrates its novel approaches at TRL5 for the monitoring of GHG and ships emission (a drone-mounted sensor to be demonstrated), detection of phosphates and nitrates in water and the breath analysis for health and well-being related applications.

    more_vert
  • Funder: European Commission Project Code: 619197
    more_vert
  • Funder: European Commission Project Code: 871741
    Overall Budget: 5,080,620 EURFunder Contribution: 5,080,620 EUR

    IoT, 5G and cloud applications have created a huge growth of datacentre traffic fuelling the market of 400GbE and the ratification of 800GbE and 1.6T standards expected within 2013-2025. Datacentre operators must keep pace with the increasing speeds and to cope with the increasing power consumption required for airflow management and cooling. Moreover, they must address the massive interconnectivity between servers and switches dictated by 5G ultra-low latency applications. 100Gb/s per lane is the next step for the realization of 800GbE modules but this will be the end of pluggables and the start of co-packaged optics with ASICs paving the way to 1.6T and beyond. TWILIGHT aims to bring InP membranes and InP-HBT electronics at unprecedently close distances (110GHz linear drivers and 100GHz TIAs. TWILIGHT will exploit the PI-SOAs to develop 4x4 and16x16 optical space switches exhibiting nanosecond latency and >50% smaller footprint. The O-band and C-band SiP transceiver demonstrators leverage up to 72% and 74% power consumption savings compared to established technologies and target the datacentre market (2-10km) and DCI (<40km), respectively, with estimated cost 0.89€/Gb/s. Exploitation of TWILIGHT’s technologies is aimed via its industrial partner MLNX.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.