Powered by OpenAIRE graph
Found an issue? Give us feedback

Korean Association Of Science and Technology Studies

Korean Association Of Science and Technology Studies

23 Projects, page 1 of 5
  • Funder: European Commission Project Code: 692333
    Overall Budget: 1,007,450 EURFunder Contribution: 1,007,450 EUR

    CHEM2NATURE addresses current limitations of UMINHO in the Chemistry field regarding its scientific know-how and partnerships with world-leading institutions. UMINHO seeks to improve the multifunctionality of natural-origin polymers, often with limited bioactivity and stimuli-responsiveness, and increase the performance of cell-based therapies. Introducing such properties by precision chemical modifications would allow the development of added-value products with instructive and adaptive properties for cellular response control, drug delivery and diagnosis. The main goal of CHEM2NATURE is to combat UMINHO’s limited knowledge, expertise and experience on advanced chemical routes for biopolymer, biomaterials and “living” surface modification. To this aim, an international training and scientific network will be established to accelerate the generation of technologies amenable to be used in the production of innovative healthcare devices. The capability of UMINHO to train highly-qualified researchers and staff would greatly increase, giving rise to a new generation of specialized professionals with scientific/translational competence. The consortium will comprise UMINHO, UAVR and 3 international competitive institutions in Chemistry: 2 European and 1 Asian. The latter will improve UMINHO’s know-how in the translational/clinical fields and raise opportunities to establish new contacts with high-performing and Emerging Asian countries. CHEM2NATURE proposes the joint organisation of events and short-term exchange of senior researchers and staff, aiming at training actions and execution of scientific work in the scope of ongoing scientific projects. Outputs include the increase of number and quality of scientific publications, intellectual property and regional-to-national economic development. CHEM2NATURE will endorse the establishment of a long-lasting consortium beyond the project timeframe for the preparation of new scientific projects and research lines in UMINHO.

    more_vert
  • Funder: European Commission Project Code: 288445
    more_vert
  • Funder: European Commission Project Code: 210092
    more_vert
  • Funder: European Commission Project Code: 261594
    more_vert
  • Funder: European Commission Project Code: 687931
    Overall Budget: 4,543,790 EURFunder Contribution: 3,597,420 EUR

    REMINDER aims to develop an embedded DRAM solution optimized for ultra-low-power consumption and variability immunity, specifically focused on Internet of Things cut-edge devices. The objectives of REMINDER are : i) Investigation (concept, design, characterization, simulation, modelling), selection and optimization of a Floating-Body memory bit cell in terms of low power and low voltage, high reliability, robustness (variability), speed, reduced footprint and cost. ii) Design and fabrication in FDSOI 28nm (FD28) and FDSOI 14nm (FD14) technology nodes of a memory matrix based on the optimized bit-cells developed. Matrix memory subcircuits, blocks and architectures will be carefully analysed from the power-consumption point of view. In addition variability tolerant design techniques underpinned by variability analysis and statistical simulation technology will be considered. iii) Demonstration of a system on chip application using the developed memory solution and benchmarking with alternative embedded memory blocks. The eventual replacement of Si by strained Si/SiGe and III-V materials in future CMOS circuits would also require the redesign of different applications, including memory cells, and therefore we also propose the evaluation of the optimized bit cells developed in FD28 and FD14 technology nodes using these alternative materials. The fulfilment of the objectives above will also imply the development of: i) New techniques for the electrical characterization of ultimate CMOS nanometric devices. This will allow us to improve the CMOS technology by boosting device performance. ii) New behavioural models, incorporating variability effects, to reach a deep understanding of nanoelectronics devices iii) Advanced simulation tools for nanoelectronic devices for state of the art, and emerging devices. iv) Extreme low power solutions The consortium supporting this proposal is ideally balanced with 2 industrial partners, 2 SMEs, 2 research centers and 3 universities.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.