Powered by OpenAIRE graph
Found an issue? Give us feedback

Okmetic

OKMETIC OYJ
Country: Finland
19 Projects, page 1 of 4
  • Funder: European Commission Project Code: 826653
    Overall Budget: 37,858,600 EURFunder Contribution: 11,090,600 EUR

    NewControl will develop virtualized platforms for vehicular subsystems that are essential to highly automated driving (realizing functions such as perception, cognition and control), so as to enable mobility-as-a-service for next generation highly automated vehicles. Its overarching goal is to provide an industrially calibrated trajectory towards increased user-acceptance of automated control functions, through an approach that is centered on the premise of safety by design. Newcontrol will deliver: 1. Fail-operational platform for robust holistic perception through a combination of Lidar, Radar, and sensor fusion 2. Generalized virtual platform for stable and efficient control of propulsion systems 3. Cost- and power-efficient, high-performance embedded compute-platforms for in-vehicle perception, cognition, and control 4. Robust approaches for implementing, verifying, and certifying automated control for safety-critical applications Several (12) demonstrators will be built to showcase the project’s findings and their capability to facilitate perception, cognition and control of next generation highly automated vehicles. The developments in NewControl will facilitate significant cost reductions for essential modules necessary for future automated vehicles. Concomitantly, these developments will improve the safety and reliability of automated systems to levels necessary for mass-market deployment. These innovations will leverage the expertise of industrial (OEMs, Tier-1, Tier-2 and technology providers) and research partners along the complete semiconductor, automotive, and aviation value chains, providing Europe with a competitive edge in a growing market. Importantly, NewControl's innovations will improve the market penetration of safety-centric automation systems, contributing directly to the European goal of zero road fatalities by 2050.

    more_vert
  • Funder: European Commission Project Code: 101139908
    Overall Budget: 34,604,400 EURFunder Contribution: 11,267,700 EUR

    The rise of quantum technology has opened the eyes of the ICT industry with respect to cryogenics. It is considered an enabler bringing in quantum functionalities and enhanced system performance and we are observing a massive growth of cryogenics from coolers to cryogenic electronics and photonics. ArCTIC is a joint effort of top European RTOs, industrial fabrication facilities, and leading application partners (23 industrial among which 14 SMEs, 7 RTO, 6 academic), sharing the vision to take a joint EU step towards the era of cryogenic classical and quantum microsystems. We aim to close the gap between qubit research and interfacing control machinery, highly needed for scaled-up quantum systems. The main goal of ArCTIC is to develop scalable cryogenic ICT microsystems and control technology for quantum processors. The technologies developed will have applications in many fields from sensing to communication, leading to important cross-fertilization that will strengthen the forming European ecosystem on cryogenic classical and quantum microsystems. ArCTIC will advance semiconductor technologies and materials, and tailor these for QT requirements and cryogenic applications. Multi-scale physics and data-driven models, cryogenic PDK modelling, device characterization, circuit design activities will support the development of cryogenic microelectronics. We will develop quantum processor platforms and broaden the applicability of microelectronic devices and circuits for cryogenic operation by developing cryo-compatible ultra-low loss substrates and thin-films, microelectronic and photonic circuits, semiconductor packaging and heterogeneous-integration techniques and benchmark the developed technologies. Scientific and Industrial ArCTIC-demonstrators and applications are driving our developments enabling the European industry to maintain and expand its leading edge in semiconductor components and processes and QT and strengthen sustainable manufacturing technologies

    more_vert
  • Funder: European Commission Project Code: 621176
    more_vert
  • Funder: European Commission Project Code: 783190
    Overall Budget: 50,391,400 EURFunder Contribution: 14,392,600 EUR

    The ambition of PRYSTINE is to strengthen and to extend traditional core competencies of the European industry, research and universities in smart mobility and in particular the electronic component and systems and cyber-physical systems domains. PRYSTINE's target is to realize Fail-operational Urban Surround perceptION (FUSION) which is based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. Therefore, PRYSTINE's high-level goals are: 1. Enhanced reliability and performance, reduced cost and power of FUSION components 2. Dependable embedded control by co-integration of signal processing and AI approaches for FUSION 3. Optimized E/E architecture enabling FUSION-based automated vehicles 4. Fail-operational systems for urban and rural environments based on FUSION PRYSTINE will deliver (a) fail-operational sensor-fusion framework on component level, (b) dependable embedded E/E architectures, and (c) safety compliant integration of Artificial Intelligence (AI) approaches for object recognition, scene understanding, and decision making within automotive applications. The resulting reference FUSION hardware/software architectures and reliable components for autonomous systems will be validated in in 22 industrial demonstrators, such as: 1. Fail-operational autonomous driving platform 2. An electrical and highly automated commercial truck equipped with new FUSION components (such as LiDAR, Radar, camera systems, safety controllers) for advanced perception 3. Highly connected passenger car anticipating traffic situations 4. Sensor fusion in human-machine interfaces for fail-operational control transition in highly automated vehicles PRYSTINE’s well-balanced, value chain oriented consortium, is composed of 60 project partners from 14 different European and non-European countries, including leading automotive OEMs, semiconductor companies, technology partners, and research institutes.

    more_vert
  • Funder: European Commission Project Code: 692470
    Overall Budget: 18,444,600 EURFunder Contribution: 5,895,050 EUR

    The ageing population and related increase in chronic diseases put considerable pressure on both the healthcare system and the society, resulting in an unsustainable rise of healthcare costs. As a result there is an urgent need to improve efficiency of care and reduce hospitalisation time in order to control cost and increase quality of life. Addressing this need, medical applications need to become less invasive and improve disease detection, diagnosis and treatment using advanced imaging and sensing techniques. ASTONISH will deliver breakthrough imaging and sensing technologies for monitoring, diagnosis and treatment applications by developing smart optical imaging technology that extends the use of minimally invasive diagnosis and treatment and allows for unobtrusive health monitoring. The project will integrate miniaturized optical components, data processing units and SW applications into smart imaging systems that are less obtrusive, cheaper, more reliable and easier to use than state of the art systems. This results into 6 demonstrators by which the technologies will be validated and which allow for pre-clinical testing in the scope of the project. The overall concept within ASTONISH builds on the development and application of common imaging/sensing technologies. Smart algorithms, multimodal fusion techniques and biomedical signal processing will process the acquired data and advanced user interfaces will simplify the complex clinical tasks. These technology components will be integrated to build application specific solutions for physiological signs monitoring, tumour detection, minimally invasive surgery, brain function monitoring and rehabilitation. The ASTONISH partners cover the full value chain, from semiconductor manufacturing to clinical centres testing the final application. The proposed innovations improve the global competitiveness of the European industry in the healthcare domain.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.