
HYDROGEN-REFUELING-SOLUTIONS
HYDROGEN-REFUELING-SOLUTIONS
2 Projects, page 1 of 1
Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2026Partners:HYDROGEN-REFUELING-SOLUTIONS, UNIMORE, FABER, HYDAC TECHNOLOGY GMBH, HYDROGEN-REFUELING-SOLUTIONS +4 partnersHYDROGEN-REFUELING-SOLUTIONS,UNIMORE,FABER,HYDAC TECHNOLOGY GMBH,HYDROGEN-REFUELING-SOLUTIONS,H2NOVA,HYDAC TECHNOLOGY GMBH,FABER,CETIMFunder: European Commission Project Code: 101101517Overall Budget: 5,786,710 EURFunder Contribution: 4,617,380 EURH2REF-DEMO aims to further develop and scale up by a factor of 5 the innovative compression concept developed in H2REF, in order to address large vehicle refuelling applications requiring hydrogen to be dispensed at rates of hundreds of kg/h, such as bus fleet refuelling every evening at the bus depot, truck refuelling, and train refuelling. Thanks to demonstrating the process during one year for commercial 35 MPa refuelling of trucks, the project will bring to TRL7 the disruptive compression technology previously developed in the H2REF project and already validated for 70 MPa refuelling of light duty vehicles. Along with capacity scale-up, H2REF DEMO will focus on process optimisation, cost reduction and further durability testing, Full optimisation will be achieved by first developing a digital twin of the scaled-up process. Use of accumulators with shells in hoop wrapped steel (Type II), a suitable technology for 35 MPa refuelling, will allow to optimise costs. A thorough accelerated testing approach involving at least 500 hours of continuous operation, will allow to verify durability of the accumulators and the compression stages over the full range of operating conditions. The demonstrated system is expected to provide a peak dispensing capacity of 150 kg/h, amounting to 1200 kg/d with 8 hours of daily operation, with a targeted cost of 1200 €/(kg/d). The process is expected to reduce electricity consumption to 3.5 kWh/kg of dispensed hydrogen, from production on site at 2 MPa to vehicle tank at 42 MPa. The knowledge gained will allow subsequent development to focus on commercial product development for short term commercial deployment. A multi-disciplinary team, composed of 4 industrial companies and 3 RTOs, combining expertise in hydraulic power supply, in bladder accumulator, in process simulation, modelling process digital twins, in H2 refuelling and distribution stations is gathered in the consortium to reach the targeted KPIs of H2REF-DEMO.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::d74ac037bfe43cb0078795df4d05b108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::d74ac037bfe43cb0078795df4d05b108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:ENGIE COFELY, LAUDA DR. R. WOBSER GMBH & CO KG, ZBT, ALFA LAVAL VICARB SAS, FAURECIA +15 partnersENGIE COFELY,LAUDA DR. R. WOBSER GMBH & CO KG,ZBT,ALFA LAVAL VICARB SAS,FAURECIA,LAUDA DR. R. WOBSER GMBH & CO KG,ENGIE COFELY,Emerson Automation Solutions,Emerson Automation Solutions,TESCOM,BENKEI,ENGIE,HYDROGEN-REFUELING-SOLUTIONS,BENKEI,HYDROGEN-REFUELING-SOLUTIONS,FAURECIA,ALFA LAVAL VICARB SAS,ZBT,TESCOM,ENGIEFunder: European Commission Project Code: 101101443Overall Budget: 4,734,730 EURFunder Contribution: 3,999,380 EURThere is a strong demand from EU to decarbonise freight transport. RHeaDHy will contribute to this by developing high-performance hydrogen (H2) refuelling stations. RHeaDHy aims at fully implement and validate new refuelling protocols that will allow to refuel 100kg H2 trucks in 1Omin. Partners will design and assembly a new very high flow refuelling line for 700bar H2 truck. To do so, they will develop missing key components needed to reach the mean flow target of 170g/s (300g/s at peak). The unique RHeaDHy comprehensive approach will guaranty an optimal design of components and refuelling line by gathering in the consortium best-in-class partners manufacturing all the components downstream high-pressure refuelling station storage to vehicle storage. This approach will allow to choose the optimal trade-off on constrains repartition among components and to fully consider vision of real vehicle constrains. New implemented refuelling protocols are based on previous work (PRHYDE) and standardization committee work, and involve calculation of refuelling coefficients specific to vehicle storage that need to be derived from hundreds of simulations. This extensive simulation work will be performed on refuelling model validated in previous European projects. To dedicate at least 1.5 years to an extensive test campaign, components and refuelling line design, manufacturing and assembly will be achieved within 2 years. 2 refuelling stations will be installed in France and Germany within the first 2.5 years. 2 truck storage test systems will be used to test and validate refuelling protocols on full scale storage. This work will allow to provide feedback from the field to significantly contribute to the establishment of standards on refuelling interface components and protocols. RHeaDHy will then represent a significant step forward to unlock H2 truck market by allowing wide and performant refuelling station network based on European alternative fuel infrastructures ambition.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e299d7fca8cc415c6490820ebedf87dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e299d7fca8cc415c6490820ebedf87dd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu