Powered by OpenAIRE graph
Found an issue? Give us feedback

PERSEO BIOTECHNOLOGY S.L.

Country: Spain

PERSEO BIOTECHNOLOGY S.L.

7 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101214605
    Overall Budget: 9,166,120 EURFunder Contribution: 7,044,900 EUR

    The main objective of the SOLRESS project is to propose an integrated biorefinery system to replace the chemical origin of some of the most widely used solvents in the industry, such as ethyl acetate, ethyl lactate and butyl acetate with a bio-based origin from second generation sugars from post-consumer coffee grounds and lignocellulosic feedstocks. The aim is to reinforce the integration of bio-based research and innovation throughout industrial bio-based systems. Moreover, in the valorisation process of these feedstocks, not only the cellulose fraction will be valorised, but also the hemicellulose fraction to obtain 2 of the most notorious green solvents of today, 2-MeTHF and GVL, from an additional line dedicated to the processing of furfural. The challenges will lie in improving downstream purification (DSP) processes and the techniques employed to achieve a technology that is efficient and cost-competitive with current chemical production systems for solvents. At the end of the project, all solvents will be validated in at least 3 of the most relevant applications (productive processes, formulations and recycling technologies) & at least 3 of the sectors with the greatest use of solvents (paints & coatings, cosmetics & materials processing) with the aim of evaluating its performance in comparison with its fossil-based counterparts, but also as a replacement for other dangerous and toxic solvents, such as NMP, CCL4, THF or toluene. Thus, the ambition of the SOLRESS project is triple: To replace the use of fossil, non-renewable raw materials with specific bio-based feedstocks in the production of some of the most widely used solvents. Offer SSbD alternatives to controversial solvents in terms of danger & toxicity (including the ones under the SVHC & SoCs categories). To improve the competitiveness of these processes by incorporating new methods & technologies that increase efficiency & sustainability, demonstrating their scalability & industrial applicability.

    more_vert
  • Funder: European Commission Project Code: 101000580
    Overall Budget: 6,641,110 EURFunder Contribution: 6,641,110 EUR

    In 2017, EU GHG emissions, including emissions from international aviationEurope has successfully reduced its GHG emissions since 1990 levels. The pace of reducing CO2 emissions is positive, however it is projected to slow after 2020 resulting in difficulties to achieve EU’s reduction target of 55% by 2030 as planned in the European Green Deal. Additional measures and policies are foreseen in EU to forefront this situation. Negative emissions technologies, as carbon capture, utilization and storage (CCUS) ones are currently a priority to explore, especially in non-exploited industrial sectors such as the bio-based industry as they significantly contribute to CO2 emissions. CATCO2NVERS will contribute to reduce GHG emissions from the bio-based industries developing 5 innovative and integrated technologies based on 3 catalytic methods (electrochemical, enzymatic and thermochemical). It will transform waste-CO2 (up to 90%) and residual biomass from 2 bio-based industries into 5 added-value chemicals (glyoxylic acid, lactic acid, furan dicarboxylic methyl ester (FDME), cyclic carbonated fatty acid methyl esters (CCFAMEs) with production yields between 70-90%. Methanol which will not have an energetic use but will be used in CATCO2NVERS own technologies. These target chemicals will be used as building blocks and monomers to obtain biopolymers of 100% bio-origin. Industrial partners will validate the application of the obtained chemical building blocks on the most relevant markets. In addition, the waste-CO2 stream will be conditioned by removing potential inhibitors for the catalysts. CATCO2NVERS will meet some of the principles in green chemistry (atom economy, use of renewable feedstocks, reduce derivatives and use of catalysts instead of stoichiometric reagents). CATCO2NVERS will explore an energy and resource efficient scenario following an industrial symbiosis model to ensure a biorefinery process along the CO2 valorization chain with zero or negative GHG emissions.

    more_vert
  • Funder: European Commission Project Code: 818308
    Overall Budget: 11,663,100 EURFunder Contribution: 9,348,930 EUR

    WaysTUP! aims to demonstrate the establishment of new value chains for urban biowaste utilisation to produce higher value purpose products (i.e. biobased products, including food and feed ingredients), through a multi-stakeholder approach in line with circular economy. The project will showcase a portfolio of new ‘urban biowaste to biobased products' processes starting from different feedstocks i.e. fish and meat waste, spent coffee grounds, household source separated biowaste, used cooking oils, cellulosic waste derived from municipal wastewater and waste treatment plants and sewage sludge. Pilot demonstration will take place in several European cities i.e. Valencia (Spain), London (UK), Alicante (Spain), Prague (Czech Republic), Athens (Greece), L'Alcúdia (Spain), Terni (Italy) and Crete (Greece). The processes will result in the production of food and feed additives, flavours, insect protein, coffee oil, bioethanol, biosolvents, polyxydroxyalkanoates, ethyl lactate, long chain dicarboxylic acid, bioplastics and biochar. End-product characterisation and safety assessment will be implemented. Life Cycle Assessment of the value chains will be conducted to assess their environmental impact. WaysTUP! will develop and implement a behavioural change approach with citizens and local communities by improving the current perception of citizens and local communities on urban biowaste as a local resource; enhancing the active participation of citizens in the separate collection of urban biowaste; and improving customer acceptance of urban bio-waste derived products. New profitable business models will be developed preparing market entry of the technology solutions demonstrated as well as of the end-products resulting from them. Finally, the project will provide guidance for city managers on adopting new organisational models supporting the valorisation of urban biowaste, as well as evidence-based EU level policy recommendations for decision makers.

    more_vert
  • Funder: European Commission Project Code: 745785
    Overall Budget: 14,606,700 EURFunder Contribution: 10,946,400 EUR

    Due to the rapid growth of population, municipal solid waste (MSW) has contributed significantly to the total amount of waste generated by our society. Today in Europe, each habitant generates, in average, 0.5 tonnes of MSW per year, increasing at an annual rate of 10%. Around 40-50% of it correspond to organic waste. This organic fraction mainly contains carbohydrates, proteins and lipids, which are all useful raw material that can be converted to valuable products. Its valorisation will help to solve environmental pollution but also contributes to the transition from a linear to a renewable circular economy. Digestion and composting have contributed to the reduction of the biodegradable fraction of MSW sent to landfill. The low economical value of compost and biogas is limiting the sustainable implementation of separate sourcing systems since increasing citizen environmental (waste) taxes is then need to tackle important logistic costs. New biobased products can help to improve waste treatment environmental and socio-economical sustainability. The aim of URBIOFIN project is to demonstrate the techno-economic and environmental viability of the conversion at semi-industrial scale (10 T/d) of the organic fraction of MSW (OFMSW) into: Chemical building blocks (bioethanol, volatile fatty acids, biogas), biopolymers (polyhydroyalkanoate and biocomposites) or additives (microalgae hydrolisated for biofertilisers). By using the biorefinery concept applied to MSW (urban biorefinery), URBIOFIN will exploit the OFMSW as feedstock to produce different valuable marketable products for different markets: agriculture, cosmetics. URBIOFIN will offer a new feasible and more sustainable scenario alternative to the current treatment of the OFMSW.

    more_vert
  • Funder: European Commission Project Code: 745828
    Overall Budget: 3,394,180 EURFunder Contribution: 2,518,520 EUR

    PERCAL will exploit Municipal Solid Waste (MSW) as feedstock to develop intermediate chemical products at high yield and low impurity level with huge industrial interest. These will be complementary to the bioethanol (current PERSEO technology), to achieve a cascade valorisation of the MSW components, i.e.: • Lactic acid (LA) to produce: 1) Eco-friendly ethyl lactate solvents by reactive distillation from lactic acid & bio-ethanol to be used in cleaning products and inks and 2) hot-melt adhesives for cardboard and other non-food applications in combination with maleic anhydride by reactive extrusion. • Succinic acid (SA) as an intermediate building blocks to production of polyols for the polyurethane industry. • Biosurfactants by chemical and/or microbiological modification of protein and lipid fraction from remaining fraction of MSW fermentation. IIn order to minimize the MSW heterogeneous composition (due to seasonal and origin variability driven by local economic, social and climate conditions) limit

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.