Powered by OpenAIRE graph
Found an issue? Give us feedback

Datapixel (Spain)

Datapixel (Spain)

12 Projects, page 1 of 3
  • Funder: European Commission Project Code: 214018
    more_vert
  • Funder: European Commission Project Code: 609046
    more_vert
  • Funder: European Commission Project Code: 870092
    Overall Budget: 19,188,200 EURFunder Contribution: 14,163,500 EUR

    The digitalization of industry opens the path for mass customization but requires leveraging the existing manufacturing ecosystems and establishing a collaborative manufacturing environment. DIMOFAC project will enable the modularity, adaptability and responsiveness of a production line by the integration of Plug-and-Produce modules in a Closed-Loop Lifecycle Management System, for continuous production adaptation, optimization and improvement, in a fast and flexible manner. Reconfigurability is achieved by implementing a Digital Twin of each module and by deploying Digital Thread linking product and process dataflow, enabling seamless secure communication throughout the product lifecycle in factory and connecting it to the management systems in conformance to RAMI4.0. The DIMOFAC consortium is issued from the leading European open initiatives on smart manufacturing, leveraging know-how from past and running EU projects such as INTEGRADDE, COMMUNION, HIMALAIA, BRAINPORT, iM²AM, MIDIH, MARKET 4.0 and building upon a pre-existing network of open DIHs and competence centers such as SMART FACTORY KL, PICTIC, FFLOR, AFH, MANUHUB@WG. Partners will further extend their services and networks to leverage on the increased flexibility brought by modular production systems. Six industrial pilot lines, with multi-material manufacturing, additive manufacturing and assembly capabilities, will enable to demonstrate DIMOFAC Modular Factory Solution, with reconfiguration time reduction of production lines, up to 75% expected for interactive displays (SCHALTAG), 50% for cosmetic, aeronautic and additive manufacturing (ALBEA, EIRE COMPOSITES and SCULPTEO); 30% for shavers (PHILIPS) and industrial modules (VDL). A key result will be the network of open pilot lines, offering R&T and services supporting process validation and implementation in EU SMEs, Midcaps and large organisations in different sectors, spreading knowledge, awareness and adoption of DIMOFAC Modular Factory Solution.

    more_vert
  • Funder: European Commission Project Code: 101058384
    Overall Budget: 9,404,150 EURFunder Contribution: 7,991,700 EUR

    As part of the green, circular and digital transformation of the European manufacturing community, it is extremely important that data-driven digital manufacturing processes urgently incorporate innovative and active resiliency strategies at production and supply chain levels to maintain their sovereignty and competitiveness levels, respecting European digital values (excellence, privacy, trust) to improve individual and value chain flexibility. In order to achieve long-term resilience to reorganise supply chains or speed up decision making to dealt with any disruption, it is imperative to ensure the implementation of distributed data-intensive intelligent and dynamic industrial decision support, augmentation and automation processes, integrating Artificial Intelligence (smart anticipation) and Intelligent Automation (rapid response) capabilities in Human-Automation symbiosis. Hence, only businesses that can articulate their data, based on AI, digital thread and digital twin solutions, will be able to react rapidly to external shocks. RE4DY mission is to demonstrate that the European industry can jointly build unique data-driven digital value networks 4.0 to sustain competitive advantages through digital continuity and sovereign data spaces across all phases of product and process lifecycle, proposing ?Data as a Product? core concept to facilitate the implementation of digital continuity across digital threads, data spaces, digital twin workflows and AI/ML/Data pipelines. This concept leverages resiliency on top of advanced manufacturing digital processes and value ecosystems supporting the development and implementation of digital continuity, so distributed data management solutions implemented to deal with factory resiliency can be immediately and seamlessly reused to enhance connected factory and value network level processes.

    more_vert
  • Funder: European Commission Project Code: 637045
    Overall Budget: 4,201,510 EURFunder Contribution: 3,764,640 EUR

    Miniaturization, advanced high performance materials and functional surface structures are all drivers behind key enabling technologies in high added value production. It is in such areas that ultrashort pulse lasers have enabled completely new machining concepts, where the big advantages of laser machining are combined with a quasi non-thermal and therefore mild process, which can be used to machine any material with high precision. An important obstacle however that hinders the full exploitation of the unique process characteristics, is the lack of a smart / adaptive machining technology. The laser process in principle is very accurate, but small deviations, e.g. in the materials to be processed, can compromise the accuracy to a very large extend. Therefore feedback systems are needed to keep the process accurate. Within this project the goal is to develop an adaptive laser micromachining system, based on ultrashort pulsed laser ablation and a novel depth measurement sensor, together with advanced data analysis software and automated system calibration routines. The sensor can be used inline with the laser ablation process, enabling adaptive processes by fast and accurate 3D surface measurements. The integrated sensor can be used to: • measure the surface topography while machining a part, in order to adapt the micromachining process, leading to highly increased machining accuracies and no defects, • measure the surface topography before machining, to scan for existing surface defects that can be removed in an automatically generated machining process, • measure complex shaped objects prior to machining, to precisely align the machining pattern to the workpiece, • quickly validate results after machining. Therefore, the main objective of this project is to develop a sensor based adaptive micro machining system using ultra short pulsed lasers for zero failure manufacturing.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.