Powered by OpenAIRE graph
Found an issue? Give us feedback

Vestas Wind Systems A/S

Country: Denmark

Vestas Wind Systems A/S

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
24 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/T008083/1
    Funder Contribution: 1,119,060 GBP

    Adaptive Aerostructures for Power and Transportation Sustainability (AdAPTS) is an Early Career Fellowship research project which will advance an ambitious new approach to the design of aerostructures by harnessing the adaptability of compliance-based morphing to continuously optimise aerodynamic performance. This will allow for greener and more sustainable fixed and rotary wing transportation and wind turbine power generation through reduced aerodynamic drag, increased efficiency and improved resilience to changing operating conditions. Compliance-based adaptive aerostructures are designed to exhibit structural and material flexibility that allows them to change their shape in a smooth and continuous manner. These changes in shape are isolated to certain desired motions in specific areas of an aerodynamic surface, for example the amount of curvature at the rear of an aerofoil, to allow for targeted changes in shape while retaining overall strength. These changes in shape improve the ability of the wing or blade to produce lift, minimise the amount of drag generated, and allow for continuous adaptation to changing operating conditions. Initial work has shown that the family of compliance-based morphing devices developed by the PI can provide significant improvements in performance of 5-25%. While the potential benefits are promising, much work remains to make compliance-based morphing a viable solution. These types of structures are poorly understood, and the underlying technologies need significant development. The poor understanding of the performance and behaviour of these structures is due to their compliant nature, which means that the structural, aerodynamic, and actuation characteristics are all highly coupled - with the aerodynamic loading affecting the actuated shape, which in turn affects the aerodynamics. This coupling requires simulation of all of the physics involved in a cohesive, coupled manner. Furthermore, the structural, material, and actuation technologies used to achieve these smooth and continuous deformed shapes are novel, and therefore significant effort is needed to mature them to the point where they can be used in real-world applications. Finally, industry partners in the fixed wing, rotary wing, and wind turbine fields see the potential in these technologies, but because they are so novel and different from current approaches, work needs to be done to show the specific, quantitative improvements in performance that these technologies can achieve for their applications. To address the three sides of this problem, AdAPTS will undertake an ambitious research programme with three parallel streams of work that will: 1.) create a fully comprehensive analysis framework to better understand the hierarchical, coupled performance of compliance-based morphing structures from the bottom up, 2.) rapidly mature the proposed morphing technologies, and 3.) work directly with industry to analyse and design adaptive structures for their products, and to predict the achievable improvements in performance.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023801/1
    Funder Contribution: 6,423,730 GBP

    This proposal is for a new EPSRC Centre for Doctoral Training in Wind and Marine Energy Systems and Structures (CDT-WAMSS) which joins together two successful EPSRC CDTs, their industrial partners and strong track records of training more than 130 researchers to date in offshore renewable energy (ORE). The new CDT will create a comprehensive, world-leading centre covering all aspects of wind and marine renewable energy, both above and below the water. It will produce highly skilled industry-ready engineers with multidisciplinary expertise, deep specialist knowledge and a broad understanding of pertinent whole-energy systems. Our graduates will be future leaders in industry and academia world-wide, driving development of the ORE sector, helping to deliver the Government's carbon reduction targets for 2050 and ensuring that the UK remains at the forefront of this vitally important sector. In order to prepare students for the sector in which they will work, CDT-WAMSS will look to the future and focus on areas that will be relevant from 2023 onwards, which are not necessarily the issues of the past and present. For this reason, the scope of CDT-WAMSS will, in addition to in-stilling a solid understanding of wind and marine energy technologies and engineering, have a particular emphasis on: safety and safe systems, emerging advanced power and control technologies, floating substructures, novel foundation and anchoring systems, materials and structural integrity, remote monitoring and inspection including autonomous intervention, all within a cost competitive and environmentally sensitive context. The proposed new EPSRC CDT in Wind and Marine Energy Systems and Structures will provide an unrivalled Offshore Renewable Energy training environment supporting 70 students over five cohorts on a four-year doctorate, with a critical mass of over 100 academic supervisors of internationally recognised research excellence in ORE. The distinct and flexible cohort approach to training, with professional engineering peer-to-peer learning both within and across cohorts, will provide students with opportunities to benefit from such support throughout their doctorate, not just in the first year. An exceptionally strong industrial participation through funding a large number of studentships and provision of advice and contributions to the training programme will ensure that the training and research is relevant and will have a direct impact on the delivery of the UK's carbon reduction targets, allowing the country to retain its world-leading position in this enormously exciting and important sector.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E00184X/1
    Funder Contribution: 7,290,750 GBP

    This proposal is for the renewal of the block grant for the Engineering Innovative Manufacturing Centre at the University of Bath. The Centre is unique in combining a design focus with a strong emphasis on manufacture in a closely integrated group. The context of the Centre's work is:* globally distributed design and manufacture of complex products and processes;* pressure on price, quality and timescale;* the move from test-based (physical prototypes) to simulation-based (virtual prototypes) engineering* the movement towards sustainable engineering practice. * the key importance in engineering of knowledge and information management. The Bath Engineering IMRC's mission is to develop tools, methods and knowledge, underpinned by appropriate theory and fundamental research, to support engineering enterprises in these new circumstances. In particular, the focus of the Centre is on whole life design information and knowledge management, and improving the design of machines, processes and systems.

    more_vert
  • Funder: European Commission Project Code: 224548
    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G012938/1
    Funder Contribution: 259,704 GBP

    Composites are now widely used in a wide range of applications. In the wind turbine and aerospace sectors recent innovations, including larger and more sophisticated structures, have driven the need for better understanding of failure of composite structures. Use of lower-cost process routes requires a need for better understanding of the inevitable defects in such composite structures. Failure of well-controlled flat composite panels is now generally well understood. However real manufactured components contain a range of stress concentrators, some associated with relatively controlled features such as joints, ply drops, sandwich panel closures and holes, some more uncertain associated with defects including fibre waviness, resin-rich areas and gaps at sandwich core breaks. The aim of the project is to understand and model how such defects affect the strength of the structure.The project has three main strands: (i) characterising realistic defects in industrial components and in controlled laboratory specimens, (ii) identifying mechanisms of compressive failure under fatigue loading and developing predictive models for failure at waviness defects, validated with experiments, (iii) modelling of defect formation during processing. Case studies suggested by industrial partners Dowty and Vestas of a propeller and a wind turbine blade will be used. The models will be incorporated into software tools, in collaboration with Simulayt Ltd, for use in design.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.