Powered by OpenAIRE graph
Found an issue? Give us feedback

Thermo Fisher Scientific Brno s.r.o.

THERMO FISHER SCIENTIFIC BRNO SRO
Country: Czech Republic

Thermo Fisher Scientific Brno s.r.o.

3 Projects, page 1 of 1
  • Funder: European Commission Project Code: 662338
    Overall Budget: 177,732,000 EURFunder Contribution: 31,816,400 EUR

    The SeNaTe project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 12nm and 10nm technology nodes. The main objective is the demonstration of the 7nm IC technology integration in line with the industry needs and the ITRS roadmap on real devices in the Advanced Patterning Center at imec using innovative device architecture and comprising demonstration of a lithographic platform for EUV and immersion technology, advanced process and holistic metrology platforms, new materials and mask infrastructure. A lithography scanner will be developed based on EUV technology to achieve the 7nm module patterning specification. Metrology platforms need to be qualified for N7’s 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 7nm technology modules a large number of new materials will need to be introduced. The introduction of these new materials brings challenges for all involved processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch, clean and planarization steps will be studied. Major European stakeholders in EUV mask development will collaboratively work together on a number of key remaining EUV mask issues. The first two years of the project will be dedicated to find the best options for patterning, device performance, and integration. In the last year a full N7 integration with electrical measurements will be performed to enable the validation of the 7nm process options for a High Volume Manufacturing. The SeNaTe project relates to the ECSEL work program topic Process technologies – More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 7nm resolution in high-volume manufacturing and fast prototyping.

    more_vert
  • Funder: European Commission Project Code: 101111890
    Overall Budget: 59,976,100 EURFunder Contribution: 15,924,700 EUR

    ALL2GaN will be the backbone for the European Power Electronics Industry by offering an EU-born smart GaN Integration Toolbox. The project will provide the base for applications with significantly increased material- and energy efficiency, thus meeting the global energy needs while keeping the CO2 footprint to the minimum. 46 partners from 12 European countries will collaborate on 8 major objectives along the entire vertical value chain of power and RF electronics. O1: Push the limits of industrial GaN devices and system-on-chip approaches for ≤ 100V O2: Leverage the full potential of innovative substrates for GaN O3: Achieve novel benchmark solutions for lateral GaN devices and integrated circuits ≥ 650V O4: Reach best technical and cost performance of RF GaN on Si with novel integration concepts O5: Break the packaging limits by application driven integrated solutions of high performance GaN products O6: Advance the methods to evaluate and optimize reliability and robustness of GaN components, modules, and systems for shortest time-to-market and maximum product availability at the end user O7: Demonstrate highest affordable performance for greener power electronics and RF applications O8: Road-mapping for the future GaN technology development and applications to support long-term exploitation/business cases and European leadership beyond ALL2GaN. The collaboration in ALL2GaN is based on a work package structure covering activities on novel power- and RF-GaN technologies for various voltage classes, latest packaging technologies, research on reliability and demonstration in 11 Use Cases. With ambitious goals and a clear vision, ALL2GaN will unleash the energy saving and material efficiency potential of GaN semiconductors for a broad field of applications, thus being in line with the major challenges outlined in the ECS-SRIA. ALL2GaN technology will directly contribute to energy saving and cutting-edge green technology innovation as…Every Watt counts!

    more_vert
  • Funder: European Commission Project Code: 101192848
    Overall Budget: 19,949,900 EURFunder Contribution: 19,949,400 EUR

    Battery technology emerges as a key solution for cutting carbon dioxide emissions across transportation, energy, and industrial sectors. Nonetheless, traditional research methods for developing new battery materials have typically depended on an Edisonian approach, characterised by trial and error, where each phase in the discovery value chain is sequentially reliant on the successful execution of preceding steps. Development and optimization of novel batteries is a process that spanned around a decade. To face this challenge, it is necessary to accelerate the discovery and optimization of next-generation batteries through the development of materials and interface acceleration platforms. The FULL-MAP project aims to revolutionize battery innovation by developing a materials acceleration platform that amplifies human capabilities and expedites the discovery of new materials and interfaces. This pivotal initiative focuses on automating laboratory operations and conducting fast, high-throughput experiments. It integrates AI and machine learning-accelerated multi-scale and multi-physics modeling, supporting intelligent decision-making. FULL-MAP's comprehensive, modular approach encompasses the inverse design of materials, autonomous orchestrated production via both traditional and novel synthesis routes, and extensive high-throughput characterization methods. These methods span ex-situ, in-situ, operando, on-line, and post-mortem analyses at various levels, from material to cell assembly and testing. It simulates the entire battery development process, from material design to battery testing, considering environmental and economic factors. By integrating computational and experimental methods with AI, Big Data, Autonomous Synthesis, and High-Throughput Testing, FULL-MAP aims to fast-track the development and deployment of next-generation materials and batteries, significantly advancing sustainable battery technology.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.