Powered by OpenAIRE graph
Found an issue? Give us feedback

Hysytech (Italy)

Hysytech (Italy)

29 Projects, page 1 of 6
  • Funder: European Commission Project Code: 736272
    Overall Budget: 3,813,540 EURFunder Contribution: 2,996,250 EUR

    BioROBURplus builds upon the closing FCH JU BioROBUR project (direct biogas oxidative steam reformer) to develop an entire pre-commercial fuel processor delivering 50 Nm3/h (i.e. 107 kg/d) of 99.9% hydrogen from different biogas types (landfill gas, anaerobic digestion of organic wastes, anaerobic digestion of wastewater-treatment sludges) in a cost-effective manner. The energy efficiency of biogas conversion into H2 will exceed 80% on a HHV basis, due to the following main innovations: 1) increased internal heat recovery enabling minimisation of air feed to the reformer based on structured cellular ceramics coated with stable and easily recyclable noble metal catalysts with enhanced coking resistance; 2) a tailored pressure-temperature-swing adsorption (PTSA) capable of exploiting both pressure and low T heat recovery from the processor to drive H2 separation from CO2 and N2; 3) a recuperative burner based on cellular ceramics capable of exploiting the low enthalpy PTSA-off-gas to provide the heat needed at points 1 and 2 above. The complementary innovations already developed in BioROBUR (advanced modulating air-steam feed control system for coke growth control; catalytic trap hosting WGS functionality and allowing decomposition of incomplete reforming products; etc.) will allow to fully achieve the project objectives within the stringent budget and time constraints set by the call. Prof. Debora Fino, the coordinator of the former BioROBUR project, will manage, in an industrially-oriented perspective, the work of 11 partners with complementary expertise: 3 universities (POLITO, KIT, SUPSI), 3 research centres (IRCE, CPERI, DBI), 3 SMEs (ENGICER, HST, MET) and 2 large companies (ACEA, JM) from 7 different European Countries. A final test campaign is foreseen at TRL 6 to prove targets achievement, catching the unique opportunity offered by ACEA to exploit three different biogas types and heat integration with an anaerobic digester generating the biogas itself.

    more_vert
  • Funder: European Commission Project Code: 851541
    Overall Budget: 5,419,330 EURFunder Contribution: 4,905,750 EUR

    REGEN-BY-2 will research, design, construct and experiment a first-of-its-kind lab-scale prototype of a recent near-worldwide patented thermodynamic cycle and related plant for the conversion of thermal sources in energy vectors, i.e. electric, heating and-or cooling powers. The start-up TIFEO, which was founded in 2018 by the team leading this proposal and is the exclusive licensee of the patent driving REGEN-BY-2, is a potential European Unicorn. REGEN-BY-2 can convert (from small to large-scale) any typology of renewable thermal source from low to high-temperature (e.g. solar, aerothermal, geothermal, hydrothermal) including additional thermal sources (e.g. waste heat). REGEN-BY-2 is enabled by machines capable to work with two-phase fluids, i.e. constituted by both liquid and vapor phases. The patented thermodynamic cycle is highly efficient as it is constituted by a proper combination of Carnot cycles operating with two-phase fluid circulating in novel two-phase expanders and two-phase compressors. To be

    more_vert
  • Funder: European Commission Project Code: 952068
    Overall Budget: 4,193,490 EURFunder Contribution: 4,193,490 EUR

    Hydrogen is being pursued as a promising route to store energy, potentially mitigating the unpredictability of electricity generation based on renewables. Provided that more than 95% of H2 produced comes from breaking the C-H bond in hydrocarbons, it is natural to think that storing H bound to C may provide a long-term solution to this challenge. However, liquid hydrocarbons are not an optimal solution given that the process of extracting H from them involves CO2 emissions. LESGO proposes to store energy in the C-H bond of reduced graphene oxide (rGO-H). rGO-H can be stored safely, exhibits an energy density more than 100 times larger than that of H2 gas, and can be easily transported wherever the electricity generation is needed. LESGO will demonstrate that rGO-H can become an ideal energy stock at an affordable cost and used to supply electrical power on demand where it is required. In the complete cycle from sun light to electrical power the raw material for storage evolves from graphite back to graphite with no CO2 emissions in any intermediate step. LESGO’s consortium has been structured to bring together a highly interdisciplinary community that will enable the emergence of an ecosystem around a circular economy relying on the use of: widely available raw materials, storing energy in chemical bonds, using it in applications that require electrical power, and finally recovering the materials for a second or multiple lives. Industrial (GRAPHENEA, HST, GENCELL and CRF), academic (UDE and AALTO) or research center (IREC and ICFO) activities are completely interwoven throughout the entire implementation of LESGO. Within the duration of LESGO, CRF will develop an application in the transport sector where rGO-H will be tested as the fuel in a support battery providing a fast charging for current electric vehicles. When looking ahead beyond the consortium, DBT will foster the engagement of a wider stakeholder/public community to consolidate the ecosystem around rGO-H.

    more_vert
  • Funder: European Commission Project Code: 101084288
    Overall Budget: 13,758,300 EURFunder Contribution: 10,361,100 EUR

    Gathering 17 partners from 7 countries, METHAREN aims to demonstrate a cost-effective, innovative, more sustainable and circular biomethane production system enabling renewable energy sources intermittency management. To do so, METHAREN is providing improvements beyond the state-of-the art along four main axes related to: i) the biogas plant efficiency; ii) flexibility and energy management for RES integration; iii) the circularity approach for sustainable production and iv) innovative business models and adapted policies. The consortium will use the results of the engineering specifications (WP1) to develop the technologies related to the gasification plant (WP2), the methanation plant (WP3) and the development of the circularity (WP4) in the various processes as METHAREN will reuse water, O2 from the electrolysis, and heat to foster overall efficiency and sustainability. All individually developed and tested systems will then be integrated and tested in a pilot site (WP5) before being operated and optimised for more than a year (WP6). In parallel, the market uptake and exploitation of solutions will be carried out all along the project to ensure that the technologies develop will answer market needs (WP7) while dedicated communication and dissemination activities (WP8) will ensure that the results of the project are known and used by relevant stakeholders. Coordinated by a European industrial engineering world leader, the management of the project (WP9) will also be ensured by WP leaders, who all have strong experience and excellent expertise in their fields as research and technical centres, engineering development companies, or industrials. This combined expertise will allow METHAREN to demonstrate an increase of cost effectiveness by at least 20% while reaching a carbon conversion rate from biowaste to methane higher than 80%, a reduction of GHG emission compared to current process by 50% and the potential of replication on at least 30 other sites in Europe.

    more_vert
  • Funder: European Commission Project Code: 768583
    Overall Budget: 7,904,420 EURFunder Contribution: 7,904,420 EUR

    CO2 from the flue gases of a rotary kiln in a cement industry (CO2: 25 vol%) will be used for the production of value-added chemicals (acid additives for cement formulations) and materials (CaCO3 nanoparticles to be used as concrete fillers). A circular-economy-approach is enabled: the CO2 produced by cement manufacturing is re-used in a significant part within the plant itself to produce better cement-related products entailing less energy intensity and related CO2 emissions by a quadratic effect. Ionic liquids (bare or amine-functionalised) will be the key technological playground for the efficient and cost-effective (20% accounting for direct and indirect means) and the good market potential of their products at a mass production scale. The first two years of the project will be focused on the development of key functional materials and process units at TRL 4-5, the third year on the assembly of single-process lines certified at TRL 5-6, and the fourth year on the assembly and testing at a cement manufacturing site (TITAN) of the TRL 6 integrated CO2 process.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.