Powered by OpenAIRE graph
Found an issue? Give us feedback

HYDROGEN EUROPE

Country: Belgium

HYDROGEN EUROPE

19 Projects, page 1 of 4
  • Funder: European Commission Project Code: 875024
    Overall Budget: 2,000,000 EURFunder Contribution: 2,000,000 EUR

    The overall objective of the ANIONE project is to develop a high-performance, cost-effective and durable anion exchange membrane water electrolysis technology. The approach regards the use of an anion exchange membrane (AEM) and ionomer dispersion in the catalytic layers for hydroxide ion conduction in a system operating mainly with pure water. This system combines the advantages of both proton exchange membrane and liquid electrolyte alkaline technologies allowing the scalable production of low-cost hydrogen from renewable sources. The focus is on developing advanced short side chain Aquivion-based anion exchange polymer membranes comprising a perfluorinated backbone and pendant chains, covalently bonded to the perfluorinated backbone, with quaternary ammonium groups to achieve conductivity and stability comparable to their protonic analogous, and novel nanofibre reinforcements for mechanical stability and reduced gas crossover. Hydrocarbon AEM membranes consisting of either poly(arylene) or poly(olefin) backbone with quaternary ammonium hydroxide groups carried on tethers anchored on the polymeric backbone are developed in parallel. The project aims to validate a 2 kW AEM electrolyser with a hydrogen production rate of about 0.4 Nm3/h (TRL 4). The aim is to contribute to the road-map addressing the achievement of a wide scale decentralised hydrogen production infrastructure with the long-term goal to reach net zero CO2 emissions in EU by 2050. To reach such objectives, innovative reinforced anion exchange membranes will be developed in conjunction with non-critical raw materials (CRMs) high surface area electro-catalysts and membrane-electrode assemblies. Cost-effective stack hardware materials and novel stack designs will contribute to decrease the capital costs of these systems. After appropriate screening of active materials, in terms of performance and stability, in single cells, these components will be validated in an AEM electrolysis stack operating with high differential pressure and assessed in terms of performance, load range and durability under steady-state and dynamic operating conditions. The proposed solutions can contribute significantly to reducing the electrolyser CAPEX and OPEX costs. The project will deliver a techno-economic analysis and an exploitation plan for successive developments with the aim to bring the innovations to market. The consortium comprises an electrolyser manufacturer, membrane, catalysts and MEAs suppliers.

    more_vert
  • Funder: European Commission Project Code: 101096598
    Overall Budget: 22,401,500 EURFunder Contribution: 16,594,400 EUR

    Heavy-duty vehicles account for about 25% of EU road transport CO2 emissions and about 6% of total EU emissions. In line with the Paris Agreement and Green Deal targets, Regulation (EU) 2019/1242 setting CO2 emission standards for HDVs (from August 14, 2019) forces the transition to a seamless integration of zero-emission vehicles into fleets. In line with the European 2050 goals ESCALATE aims to demonstrate high-efficiency zHDV powertrains (up to 10% increase) for long-haul applications that will provide a range of 800 km without refueling/recharging and cover at least 500 km average daily operation (6+ months) in real conditions. ESCALATE will achieve this by following modularity and scalability approach starting from the β-level of hardware and software innovations and aiming to reach the γ-level in the first sprint and eventually the δ-level at the project end through its 2 sprint-V-cycle. ESCALATE is built on the novel concepts around 3 main innovation areas, which are: i) Standardized well-designed, cost effective modular and scalable multi-powertrain components; ii) Fast Fueling & Grid-friendly charging solutions; and iii) Digital Twin (DT) & AI-based management tools considering capacity, availability, speed, and nature of the charging infrastructures as well as the fleet structures. Throughout the project lifetime, 5 pilots, 5 DTs and 5 case studies on TCO (with the target of 10% reduction), together with their environmental performance via TranSensusLCA will be performed. The ultimate goal is to develop well-designed modular building blocks with a TRL7/8 based on business model innovations used for 3 types of zHDVs {b-HDV,f-HDV,r-HDV}. Furthermore, 3 white papers will be produced, one of which will contribute defining the pathway for reducing well-to-wheel GHG emissions from HDVs based on results and policy assessments.

    more_vert
  • Funder: European Commission Project Code: 779469
    Overall Budget: 7,613,400 EURFunder Contribution: 4,997,740 EUR

    The Haeolus project will install a 2 MW electrolyser in the remote region of Varanger, Norway, inside the Raggovidda wind farm, whose growth is limited by grid bottlenecks. The electrolyser will be based on PEM technology and will be integrated with the wind farm, hydrogen storage and a smaller fuel cell for re-electrification. To maximise relevance to wind farms across the EU and the world, the plant will be operated in multiple emulated configurations (energy storage, mini-grid, fuel production). Like many large wind farms, especially offshore, Raggovidda is difficult to access, in particular in winter: Haeolus will therefore deploy a remote monitoring and control system allowing the system to operate without personnel on site. Maintenance requirements will be minimised by a specially developed diagnostic and prognostic system for the electrolyser and BoP systems. The containerised electrolyser is a standard model carried by project partner Hydrogenics. The integrated system will be housed in a specially erected hall to protect it from the Arctic winter and allow year-round access. The integrated system of electrolyser, fuel cells, and wind farm will be designed for flexibility in demonstration, to allow emulating different operating modes and grid services. Haeolus answers the AWP's challenge with the widest possible project scope, with operation modes not limited to the site's particular needs but extended to all major use cases, and several in-depth analyses (released as public reports) on the business case of electrolysers in wind farms, their impact on energy systems and the environment, and their applicability in a wide range of conditions.

    more_vert
  • Funder: European Commission Project Code: 278732
    more_vert
  • Funder: European Commission Project Code: 884157
    Overall Budget: 12,555,400 EURFunder Contribution: 9,887,140 EUR

    Natural gas (NG) fired Combined Cycle (CC) power plants are currently considered the most flexible power plants to operate in the EU grid to facilitate RES penetration. They changed their role in the EU electric market from the backbone of EU electrical grid to providing most of regulation services necessary to increase the share of non-programmable renewable sources into the electrical grid. In order to enhance their flexibility and also start to sell flexibility/ancillary services (also considering potential virtual aggregation), GT Original Equipment Manufacturers (OEMs) and Utilities are investigating new strategies and technologies for power flexibility, also considering that a “fuel switch” is close foreseen from coal to NG among most used fossil based dispatchable power plants and that the role of CC will be of “RES best friends” at least up to 2030. In this sense reducing their emission is also a strong need of GT R&D panorama promoting the exploitation of different fuels than Natural gas only. FLEXnCONFU aims to demonstrate at TRL7 in Ribatejo EDPP CC Power Plant a Power-to-gas-to-power (P2G2P) solution that will enhance CC flexibility (thus enabling them to provide grid flexibility services and getting higher revenues), reduce their NG consumption and therefore their related emission. The P2G2P system will be based on a Power-to-Hydrogen solution developed by HYGS+ICI, while a Power-to-ammonia-to-power solution developed by PROTON and ICI will be demonstrated in a properly modified microgas turbine operating in a UNIGE laboratory within the Savona Smart Microgrid (TRL6). The P2G2P solution will be directly controlled by a grid driven/responsive management system developed by MAS. GT combustion acceptability of different NG/H2/NH3 mixtures will be studied in CU labs. FLEXnCONFU will be a demonstration to market project and upscale and replication of the demonstrate P2H/P2A will be studied (in ENGIE and TP CC plants) and properly promoted by ETN.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.