Powered by OpenAIRE graph
Found an issue? Give us feedback

FCP FUEL CELL POWERTRAIN GMBH

Country: Germany

FCP FUEL CELL POWERTRAIN GMBH

2 Projects, page 1 of 1
  • Funder: European Commission Project Code: 101005934
    Overall Budget: 14,310,400 EURFunder Contribution: 7,500,000 EUR

    This project will develop an open standard for heavy-duty fuel-cell modules in terms of size, interfaces, control and test protocols, with the objective of kickstarting the use of fuel cells and hydrogen in the heavy-duty mobility sector, where electrification with batteries is impractical. Multiple modules may be integrated in a system, similar to AA batteries; this will allow using the same modules for multiple sizes. Combined with the standardisation across several sectors (road, offroad, rail, maritime, etc.) represented by participating OEMs, the same modules will address a large pooled market. The size of the market, and the availability of multiple module suppliers (8 in this project alone) will create a fair competition environment where OEMs may choose and change vendors, driving down prices and activating a virtuous cycle through economies of scale and achieving one of the main goals of the FCH JU's Work Programme in the heavy-duty mobility sector. This project will also produce prototypes form 8 leading FC vendors, which will then be thoroughly tested by two independent institutes for compliance with the open standards produced by the project itself. The project will feature significant dissemination and outreach activities, especially towards external OEMs that may become customers of the module suppliers.

    more_vert
  • Funder: European Commission Project Code: 875155
    Overall Budget: 2,295,780 EURFunder Contribution: 2,295,780 EUR

    The CAMELOT proposal brings together highly experienced research institutes (SINTEF, IMTEK), universities (TUC), fuel cell MEA suppliers (JMFC) and transport OEMs (BMW, FCP) to improve understanding of the limitations in fuel cell electrodes. Based on previous FCH2JU projects, the consortium is uniquely positioned to investigate ultra-thin, ultra-low loading layers needed for the next generation of MEAs. CAMELOT will use a combination of numerical modelling and advanced in situ characterisation to build a scientific understanding of the limitations on state of the art MEAs. Camelot will update an open source simulation tool (FFC) to accurately describe the charge, mass and heat transport mechanisms in SOA materials with the latest MEA designs. This tool will enable the partners to investigate the impact of new MEA designs at the single repeat unit level, providing guidance on the next generation of MEA enabling the performance required by the 2024 MAWP. The presence of two OEMs and an MEA manufacturer will ensure that the modelling results are validated on the latest generation of fuel cell hardware and are directly exploitable by the industry. Dissemination will also play an important role thanks to the use of an open source model, meaning that the scientific developments in the project will be easily available for the global fuel cell community to exploit.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.