Powered by OpenAIRE graph
Found an issue? Give us feedback

IRD

IRD FUEL CELLS A/S
Country: Denmark
9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 875024
    Overall Budget: 2,000,000 EURFunder Contribution: 2,000,000 EUR

    The overall objective of the ANIONE project is to develop a high-performance, cost-effective and durable anion exchange membrane water electrolysis technology. The approach regards the use of an anion exchange membrane (AEM) and ionomer dispersion in the catalytic layers for hydroxide ion conduction in a system operating mainly with pure water. This system combines the advantages of both proton exchange membrane and liquid electrolyte alkaline technologies allowing the scalable production of low-cost hydrogen from renewable sources. The focus is on developing advanced short side chain Aquivion-based anion exchange polymer membranes comprising a perfluorinated backbone and pendant chains, covalently bonded to the perfluorinated backbone, with quaternary ammonium groups to achieve conductivity and stability comparable to their protonic analogous, and novel nanofibre reinforcements for mechanical stability and reduced gas crossover. Hydrocarbon AEM membranes consisting of either poly(arylene) or poly(olefin) backbone with quaternary ammonium hydroxide groups carried on tethers anchored on the polymeric backbone are developed in parallel. The project aims to validate a 2 kW AEM electrolyser with a hydrogen production rate of about 0.4 Nm3/h (TRL 4). The aim is to contribute to the road-map addressing the achievement of a wide scale decentralised hydrogen production infrastructure with the long-term goal to reach net zero CO2 emissions in EU by 2050. To reach such objectives, innovative reinforced anion exchange membranes will be developed in conjunction with non-critical raw materials (CRMs) high surface area electro-catalysts and membrane-electrode assemblies. Cost-effective stack hardware materials and novel stack designs will contribute to decrease the capital costs of these systems. After appropriate screening of active materials, in terms of performance and stability, in single cells, these components will be validated in an AEM electrolysis stack operating with high differential pressure and assessed in terms of performance, load range and durability under steady-state and dynamic operating conditions. The proposed solutions can contribute significantly to reducing the electrolyser CAPEX and OPEX costs. The project will deliver a techno-economic analysis and an exploitation plan for successive developments with the aim to bring the innovations to market. The consortium comprises an electrolyser manufacturer, membrane, catalysts and MEAs suppliers.

    more_vert
  • Funder: European Commission Project Code: 101111904
    Overall Budget: 3,487,160 EURFunder Contribution: 3,487,160 EUR

    RealHyFC gathers key actors of the whole PEMFC value chain to overcome crucial hurdles towards industrial empowerment on heavy-duty (HD) applications, mainly for land transport while expecting benefits for ships, trains or aircrafts. The technical issues precluding a rapid and wide adoption of PEMFC on HD applications are linked with reliability and versatility of the stacks. RealHyFC will bring knowledge and experimental feedback on two key levels: stack design and stack operation. Regarding stack design, carbon and metallic technologies will be investigated on efficiency and lifetime issues, local degradation and mechanical properties. Unpreceded direct comparison will be possible thanks to the adaption of an open-design made for metal to carbon-composite case, with developments on bipolar plates and balance of stack. RealHyFC will eventually deliver a public open-design platform with demonstrated high efficiency and durability under HD application conditions. For long-lasting operation, the diagnostics and monitoring of stacks are crucial to preclude damages on performance or components: RealHyFC will bring new solutions based on improved physical degradation models allowing to develop virtual sensors algorithms to optimize fuel cell operating conditions and hybridization strategy. Final validation, by demonstration of lifetime improvements thanks to an adjusted control chain, will be done following system-representative simulation and experimental approaches towards durability-oriented operation in HD environment. The outcomes of the project are strongly linked with the industrial world and settings carrying relevant PEMFC use. RealHyFC will enable the development of cost-competitive, reliable and durable fuel cell technology. To this extend, an exploitation strategy will foster industrial empowerment, alongside dissemination and communication towards technical audience and large public.

    more_vert
  • Funder: European Commission Project Code: 101101433
    Overall Budget: 2,748,610 EURFunder Contribution: 2,748,610 EUR

    The R&D project PEMTASTIC aims to meet the key technical challenges to increase durability of MEAs for HD applications. These challenges are approached with a combination of model-based design and the development of a durable CCM using innovative materials tailored for heavy duty operation at high temperature (105°C). The quantitative targets correspond to a durability of 20,000 hours maintaining a state-of the art power density of 1.2 W/cm2@0.65 V at a Pt loading of 0.30 g/kW. Truck mission profiles will be analyzed (Symbio) in order to define relevant FC operation protocols and stressors. Degradation tests will be carried out in differential cells and will be assisted by physical-chemical material characterization to assure well defined data required for parametrization of degradation models (CEA, DLR). A combination of micro- and mesoscale models as well as 1D and 2D cell models (ZHAW, DLR) will capture the impact of material parameters on performance and durability and will address all material and CCM parameters which will be iteratively adapted by industry partners. The materials which will be implemented and adapted are advanced corrosion resistant supports (Imerys) combined with a novel catalyst deposition technique (Heraeus) to mitigate for ECSA loss. Prototype Nafion ionomers and membranes with high conductivity in dry conditions will be used (Chemours). Eventually, an improved cathode catalyst layer will be designed considering Pt particle size distribution and superior catalyst ionomer interaction (IRD). The selection of a commercial GDL will consider accommodation of a wide range of operating conditions. The final MEA and the concept of model-based MEA development will be validated in a short stack at TRL4 (Symbio). As additional outcomes, implications on system management and on the BoP components will be drawn, and the reduced computational demand for degradation modelling will facilitate fast health assessment and performance prediction.

    more_vert
  • Funder: European Commission Project Code: 779540
    Overall Budget: 1,927,340 EURFunder Contribution: 1,926,220 EUR

    Water electrolysis supplied by renewable energy is the foremost technology for producing “green” hydrogen for fuel cell vehicles. The ability to follow rapidly an intermittent load makes this an ideal solution for grid balancing. To achieve large-scale application of PEM electrolysers, a significant reduction of capital costs is required together with a large increase of production rate and output pressure of hydrogen, while assuring high efficiency and safe operation. To address these challenges, a step-change in PEM electrolysis technology is necessary. The NEPTUNE project develops a set of breakthrough solutions at materials, stack and system levels to increase hydrogen pressure to 100 bar and current density to 4 A cm-2 for the base load, while keeping the nominal energy consumption <50 kWh/kg H2. The rise in stack temperature at high current density will be managed by using Aquivion® polymers for both membrane and ion exchange resin. Aquivion® is characterised by enhanced conductivity, high glass transition temperature and increased crystallinity. Dramatic improvements in the stack efficiency will be realised using novel thin reinforced membranes, able to withstand high differential pressures. An efficient recombination catalyst will solve any gas crossover safety issues. Newly developed electro-catalysts with increased surface area will promote high reaction rates. The novel solutions will be validated by demonstrating a robust and rapid-response electrolyser of 48 kW nominal capacity with a production rate of 23 kg H2/day. The aim is to bring the new technology to TRL5 and prove the potential to surpass the 2023 KPIs of the MAWP 2017. The proposed solutions contribute significantly to reducing the electrolyser CAPEX and OPEX costs. The project will deliver a techno-economic analysis and an exploitation plan to bring the innovations to market. The consortium comprises an electrolyser manufacturer, suppliers of membranes, catalysts and MEAs and an end-user.

    more_vert
  • Funder: European Commission Project Code: 761093
    Overall Budget: 4,264,450 EURFunder Contribution: 4,264,450 EUR

    LOTER.CO2M aims to develop advanced, low-cost electro-catalysts and membranes for the direct electrochemical reduction of CO2 to methanol by low temperature CO2-H2O co-electrolysis. The materials will be developed using sustainable, non-toxic and non-critical raw materials. They will be scaled-up, integrated into a gas phase electrochemical reactor, and the process validated for technical and economic feasibility under industrially relevant conditions. The produced methanol can be used as a chemical feedstock or for effective chemical storage of renewable energy. The demonstration of the new materials at TRL5 level, and the potential of this technology for market penetration, will be assessed by achieving a target electrochemical performance > 50 A/g at 1.5 V/cell, a CO2 conversion rate > 60%, and a selectivity > 90% towards methanol production with an enthalpy efficiency for the process > 86%. A significant increase in durability under intermittent operation in combination with renewable power sources is

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.