Powered by OpenAIRE graph
Found an issue? Give us feedback

Mitsui Babcock Energy Ltd

Country: United Kingdom

Mitsui Babcock Energy Ltd

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/G062153/1
    Funder Contribution: 1,737,740 GBP

    If the carbon dioxide produced when coal is burnt to make electricity can be collected in a concentrated form then it can be compressed into a dense liquid and squeezed into the pores between rock grains a kilometre or more underground. By putting the carbon dioxide (CO2 ) in places where the porous rocks are sealed by layer of non-porous rocks we can be very confident that most of it will stay there for tens of thousands of years, so it won't increase the risk of dangerous climate change. But current coal power stations don't release the CO2 in a concentrated form; it is mixed with about five times its volume of nitrogen and oxygen, from the air used to burn the coal. One way to avoid this is to burn the coal in pure oxygen instead of air. We know this can theoretically be made to work, but if pure oxygen - or really a 'synthetic air' made up of oxygen and recycled combustion products instead of nitrogen - is used to burn coal then many things would be different from using air. This project will develop the scientific understanding that power plant builders and operators need to predict and cope with these differences.To help develop a better scientific understanding of oxyfuel combustion we will undertake experiments in a 150 kW laboratory burner. This is small (1% of the size!) compared to real power plant burners, but it will use the same oxygen/flue gas mixture. Computer models will be developed to analyse how the coal burns in the laboratory scale burner. These models can then be applied to full scale burners. Using the power available from modern computer systems it is now possible to track the behaviour of all of the swirling gases and particles in a flame ands see how they move and react over very small intervals of time. It's possible - but we are still learning how to do it properly. To help us do this we are taking high speed (1000 frames per second) video recordings of our laboratory oxyfuel flames to see how they really flow and flicker and using the bright and precise beams from laser to help track how particles move and to tell us what sort of gas mixtures are present.We are also reproducing just some of the things that happen in flame in special test equipment so that we have simpler things to measure. These measurements then go into the computer models. How coal particles first catch alight and then how they char and burn are particularly important. We are also interested how the ash in the coal will behave. It can cause problems coating the walls of air-fired power plants, but after a lot of experience we know how to avoid that. Some of those lessons are probably going to have to be re-learned for oxyfuel combustion and the experts who help to sort out air combustion are now starting to do that on our project. We are also looking at how oxyfuel combustion products might attack the steels used in boilers; new materials might be needed, especially in hot or dusty locations.Finally, we need to have trained scientists and engineers to help design and build these new types of power plants. Our project will help to train a number of these, and also build up the experience in the academic community that can be used to advise industry when they come to build and operate new oxyfuel plants. We will also have developed some of the new measurement techniques that can be used to help tune the first plants to give the best possible performance.But no project can do it all. So we are working closely with other groups in the UK and overseas - the IEA Greenhouse Gas Programme coordinates an excellent network that we belong too. And as we learn more we also expect to come up with more questions that need to be answered plus some good ideas for ways to do that.

    more_vert
  • Funder: UK Research and Innovation Project Code: DT/E005691/1
    Funder Contribution: 462,611 GBP

    The research consists of three parallel activities, within three different departments at Imperial College London: Chemical Engineering, Mechanical Engineering and Materials. Chemical Engineering The Chemical Engineering activity will include the validation and demonstration of a scheme for separating CO2 from oxy-combustion effluent gases, utilising a proprietary reaction/separation scheme proposed by Air Products. At present, there are insufficient data to confidently predict the performance of the scheme under industrial conditions and full process design. To this purpose a theoretical, modelling and experimental study will be carried out, involving five steps: 1) the design and commissioning of a laboratory rig suitable for characterisation of the underlying main reaction and mass exchange mechanisms involved, using a well characterised synthetic effluent gas that simulates the actual effluents (but without impurities such as mercury and arsenic); 2) the design and execution of a set of experiments with these synthetic feeds, followed by data analysis and model development; 3) the design and commissioning of a ruggedised reactor/separator rig, suitable for operation in a pilot plant environment, and its validation against the laboratory rig using the same relatively clean synthetic feeds; 4) the commissioning and running of the pilot plant reactor/separator rig at the pilot plant site, utilising the actual effluents produced by the oxy-combustion of pulverised coal; and 5) the analysis of the pilot plant data. This will enable us to: a) assess the separation achieved in practice under various conditions, in terms of purities, recoveries, efficiencies, etc., for CO2 and other main species of interest (such as NOx, SOx, mercury, chlorine); b) to produce a set of quality data suitable for modelling development and estimation of the main mechanisms and parameters involved: c) to produce a set of mathematical models that make use of those data; and d) to assess the ability of the theoretical and numerical models to represent the data obtained, their predictive capabilities over a range of operations, and their potential for use in subsequent process development and design of equipment at a much larger (industrial) scale. Mechanical Engineering The Mechanical Engineering activity will include measuring ignition behaviour of coal dust suspensions in O2/CO2 mixtures representative of oxyfuel power plant conditions using the NIOSH 20 litre ignition test vessel. Tests will be undertaken on the same six coals characterised using different techniques at Nottingham and results will be compared for cross-checking and to identify appropriate fundamental coal property test methods to support future oxyfuel developments. Staff will work closely with industrial staff at RWE to identify novel Reliability, Availability, Maintainability and Operability (RAMO) issues for a range of oxyfuel plant design options and key factors likely to have significant effects on plant performance. They will identify how existing knowledge on coal utilisation science can be applied to analyse and predict RAMO issues, and will specify and undertake any additional fundamental coal characterisation tests that may be possible within the scope of the project and identify and analyse further key fundamental coal utilisation research needs to support RAMO performance prediction and improvement in new oxyfuel plants. Materials The Materials activity will acquire samples of coal, ash and deposits from oxyfuel trials on the E.ON combustion test facility and characterise the microstructures and chemical compositions of these samples, mainly by electron microscopy. This will allow the difference in behaviour of coal minerals and ash between oxyfuel and conventional pulverised coal combustion conditions to be investigated, and the impact of oxyfuel combustion on coal ash properties and boiler deposition to be predicted.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G06315X/1
    Funder Contribution: 209,093 GBP

    Coal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G063451/1
    Funder Contribution: 490,609 GBP

    Coal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G063214/1
    Funder Contribution: 305,084 GBP

    Coal will likely remain in an important position in the world energy mix in the foreseeable future because of its stability in supply and low cost in production. However, coal fired power generation industry has to substantially reduce its pollutant emission to survive in the future carbon constrained energy market. Oxycoal combustion with CO2 capture from flue gas is an emerging technology that can be adapted to both new and existing coal-fired power stations leading to a substantial reduction in carbon emission. Various assessments suggest that oxycoal technology is feasible and more favourable than other CCS (Carbon Capture and Storage) technologies, such as post-carbon capture. Currently, oxycoal combustion technology is still in its laboratory and technology demonstration stages and there is a significant knowledge gap in this new technology. A number of uncertainties exist in the combustion process where the changes in the heat transfer and combustion characteristics are, among others, the major concerns. Issues with system designs such as the optimum oxygen concentrations and its impact need to be investigated. Other complications include such as high concentrations of sulphur and mercury and changes in deposition and corrosion in the boiler and the downstream elements. If the technology is to be widely adopted in power generation industry for CCS then it is imperative that the impacts of these changes in the combustion processes are well understood, and that economic solutions to mitigating the problems encountered are identified.The proposed research aims to achieve an in-depth understanding of the oxycoal combustion processes, to develop key modelling capabilities for process prediction, and to provide guidelines to the power generation industry on design new and/or retrofitting existing power plant with oxycoal combustion technology. Because of the high costs of performing large scale tests, process modelling is commonly used as an alternative in technology development. In this project, advanced Computational Fluid Dynamics (CFD) techniques will be employed to perform detailed simulations on the oxycoal combustion processes. Because the oxycoal combustion is very different from the conventional air-coal combustion, new oxycoal specific CFD sub-programmes will be developed in order to achieve accurate modelling results. In parallel to the CFD modelling, well controlled practical measurements will be carried out to setup a comprehensive database on the oxycoal combustion and to provide validation to the CFD model development. In addition, a unique 3D flame monitoring system will be developed to monitor the oxycoal combustion flames. This integrated approach of advanced computational modelling, detailed experimental testing, and 3D flame imaging forms a mutual validating and complementary system to ensure a credible research output so that an in-depth understanding of the impact of oxycoal on flame characteristics, critical reaction kinetics, and devolatilsation and char reaction in the combustion processes may be achieved.The project consortium comprises of three academic centres of expertise from Leeds, Kent and the Imperial College. Three leading energy research institutes in China are joint force on the research. Collaborative research programmes have been arranged to carryout experimental testing and theoretical simulation in both UK and China. The project has also gained strong supported from leading power generation companies and commercial CFD developer providing practical advice on oxycoal combustion tests and combustion model development. The project provides a platform for the leading UK groups and leading Chinese partners to work together in tackling the significant issues related to the oxycoal combustion technology, which is expected to contribute significantly in cutting the CO2 and other greenhouse gases emissions in the power industry in both countries.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.