Powered by OpenAIRE graph
Found an issue? Give us feedback

Dyson Appliances Ltd

Country: United Kingdom

Dyson Appliances Ltd

46 Projects, page 1 of 10
  • Funder: UK Research and Innovation Project Code: EP/L01548X/1
    Funder Contribution: 4,523,740 GBP

    The proposed EPSRC CDT in the Science and Applications of Graphene and Related Nanomaterials will respond to the UK need to train specialists with the skills to manipulate new strictly two-dimensional (2D) materials, in particular graphene, and work effectively across the necessary interdisciplinary boundaries. Graphene has been dubbed a miracle material due to the unique combination of superior electronic, mechanical, optical, chemical and biocompatible properties suitable for a large number of realistic applications. The potential of other 2D materials (e.g. boron nitride, transition metal and gallium dichalcogenides) has become clear more recently and already led to developing 'materials on demand'. The proposed CDT will build on the world-leading research in graphene and other 2D nanomaterials at the Universities of Manchester (UoM) and Lancaster (LU). In the last few years this research has undergone huge expansion from fundamental physics into chemistry, materials science, characterization, engineering, and life sciences. The importance of developing graphene-based technology has been recognized by recent large-scale investments from UK and European governments, including the establishment of the National Graphene Institute (NGI) at UoM and the award of 'Graphene Flagship' funding by the European Commission within the framework of the Future and Emerging Technologies (Euro1 billion over the next 10 years), aiming to support UK and European industries.Tailored training of young researchers in these areas has now become urgent as numerous companies and spin-offs specializing in electronics, energy storage, composites, sensors, displays, packaging and separation techniques have joined the race and are investing heavily in development of graphene-based technologies. Given these developments, it is of national importance that we establish a CDT that will train the next generation of scientists and engineers who will able to realise the huge potential of graphene and related 2D materials, driving innovation in the UK, Europe and beyond. The CDT will work with industrial partners to translate the results of academic research into real-world applications in the framework of the NGI and support the highly successful research base at UoM and LU. The new CDT will build directly on the structures and training framework developed for the highly successful North-West Nanoscience DTC (NOWNANO). The central achievement of NOWNANO has been creating a wide ranging interdisciplinary PhD programme, educating a new type of specialist capable of thinking and working across traditional discipline boundaries. The close involvement of the medical/life sciences with the physical sciences was another prominent and successful feature of NOWNANO and one we will continue in the new CDT. In addition to interdisciplinarity, an important feature of the new CDT will be the engagement with a broad network of users in industry and society, nationally and internationally. The students will start their 4-year PhD with a rigorous, bespoke 6-month programme of taught and assessed courses covering a broad range of nanoscience and nanotechnology, extending beyond graphene to other nanomaterials and their applications. This will be followed by challenging, interdisciplinary research projects and a programme of CDT-wide events (annual conferences, regular seminars, training in transferable skills, commercialization training, outreach activities). International experience will be provided by visiting academics and secondments to overseas partners. Training in knowledge transfer will be a prominent feature of the proposed programme, including a bespoke course 'Innovation and Commercialisation of Research' to which our many industrial partners will contribute, and industrial experience in the form of 3 to 6 months secondments that each CDT student will undertake in the course of their PhD.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E00184X/1
    Funder Contribution: 7,290,750 GBP

    This proposal is for the renewal of the block grant for the Engineering Innovative Manufacturing Centre at the University of Bath. The Centre is unique in combining a design focus with a strong emphasis on manufacture in a closely integrated group. The context of the Centre's work is:* globally distributed design and manufacture of complex products and processes;* pressure on price, quality and timescale;* the move from test-based (physical prototypes) to simulation-based (virtual prototypes) engineering* the movement towards sustainable engineering practice. * the key importance in engineering of knowledge and information management. The Bath Engineering IMRC's mission is to develop tools, methods and knowledge, underpinned by appropriate theory and fundamental research, to support engineering enterprises in these new circumstances. In particular, the focus of the Centre is on whole life design information and knowledge management, and improving the design of machines, processes and systems.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T003189/1
    Funder Contribution: 2,793,920 GBP

    To assess the impact of pollution on personal health in outdoor/indoor urban environments, we will develop a physics-based multi-scale approach across biological length scales from the cell, lung, person (surrounded by green infrastructure) up to the neighbourhood scale. We will examine the biophysical components of pollutants that determine their cellular fate, their potential for cell and tissue damage and how this relates to health outcomes. We will use airway models to assess particle deposition and effects on people's health as well as trace the pollution particles through an individual person down to the cellular level. The focus of the analysis will be on the immediate micro-environment (~20m) around a person. The integrated modelling will also represent various intervention scenarios (e.g. roadside hedges or medication for at-risk people such as asthmatics) to assess reduced exposure and corresponding changes in health outcomes. These biologic parameters of exposure will be integrated with the cardio-respiratory response to pollution in 80 participants using a combination of cardio-respiratory, physical activity and personal fine particles exposure monitors. We will numerically model the pollution and air flows at the neighbourhood scale and apply an approach centred on the impact of pollution on health to all aspects of modelling, sensor placement and management of the environment. Thus, any mitigation strategies can be designed to minimize the impact of pollution on health. We will model the dispersion of particles and their micro-physics within the neighbourhood with an emphasis on green infrastructure and their ability to mitigate pollution e.g. hedges can reduce heavy metal pollution. We will examine the physical effects and functional chemistry of the metals and organic components of particles at the ultracellular level to determine their interference to cell metabolism and health. We will use modelling to predict the outcomes of cell fate, so that we can back propagate biological potential of pollution particles (say) through to the individual and into the neighbourhood scale. Thus, modelling will be key at each length scale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S024069/1
    Funder Contribution: 5,384,850 GBP

    Over the next twenty years, the automotive and aerospace sector will undergo a fundamental revolution in propulsion technology. The automotive sector will rapidly move away from petrol and diesel engine powered cars towards fully electric propelled vehicles whilst planes will move away from pure kerosene powered jet engines to hybrid-electric propulsion. The automotive and aerospace industry has worked for the last two decades on developing electric propulsion research but development investment from industry and governments was low until recently, due to lag of legislation to significantly reduce greenhouse gases. Since the ratification of the 2016 Paris Agreement, which aims to keep global temperature rise this century well below 2 degrees Celsius, governments of industrial developed nations have now legislated to ban new combustion powered vehicles (by 2040 in the UK and France, by 2030 in Germany and similar legislation is expected soon in China). The implementation of this ban will see a sharp rise of the global electric vehicle market to 7.5 million by 2020 with exponential growth. In the aerospace sector, Airbus, Siemens and Rolls-Royce have announced a 100-seater hybrid-electric aircraft to be launched by 2030 following successful tests of 2 seater electric powered planes. Other American and European aerospace industries such as Boeing and General Electric must also prepare for this fundamental shift in propulsion technology. Every electric car and every hybrid-electric plane needs an electric drive (propulsion) system, which typically comprises a motor and the electronics that controls the flow of energy to the motor. In order to make this a cost-effective reality, the cost of electric drives must be halved and their size and weight must be reduced by up to 500% compared to today's drive systems. These targets can only be achieved by radical integration of these two sub-systems that form an electric drive: the electric motor and the power electronics (capacitors, inductors and semiconductor switches). These are currently built as two independent systems and the fusion of both creates new interactions and physical phenomena between power electronics components and the electric motor. For example, all power electronics components would experience lots of mechanical vibrations and heat from the electric motor. Other challenges are in the assembly of connecting millimetre thin power electronics semiconductors onto a large hundred times bigger aluminium block that houses the electric motor for mechanical strength. To achieve this type of integration, industry recognises that future professional engineers need skills beyond the classical multi-disciplinary approach where individual experts work together in a team. Future propulsion engineers must adopt cross-disciplinary and creative thinking in order to understand the requirements of other disciplines. In addition, they will need an understanding of non-traditional engineering subjects such as business thinking, use of big data, environmental issues and ethical impact. Future propulsion engineers will need to experience a training environment that emphasises both deep subject knowledge and cross-disciplinary thinking. This EPSRC CDT in Power Electronics for Sustainable Electric Propulsion is formed by two of UK's largest and most forward thinking research groups in this field (at Newcastle and Nottingham Universities) and includes 16 leading industrial partners (Cummins, Dyson, CRRC, Protean, to name a few). All of them sharing one vision: To create a new generation of UK power electronics specialists, needed to meet the societal and industrial demand for clean, electric propulsion systems in future automotive and aerospace transport infrastructures.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S019804/1
    Funder Contribution: 896,886 GBP

    This is an extension of the Fellowship: 'NEMESIS' (New Mathematics for Materials Modelling in the Engineering Sciences and Industrial Sectors). Advanced materials sit at the heart of modern technology and are at the forefront of many improvements in quality of life. Key to enhancing material properties is a deep understanding of the link from microstructure to macroscale properties. This requires a diverse range of science including theoretical modelling, computational simulation and experimentation. This Fellowship Extension project sits at the triple point of these approaches and principally, uses the experience of the team, in particular in advanced mathematical modelling in order to design new materials for a range of applications. Three themes will be considered, "Reinforced syntactic foams", "Acoustic metamaterials" and "Thermal metamaterials" and a programme of Public Engagement will illustrate the research to a wide audience. Syntactic foams offer stiff, lightweight materials with strong recoverability, even after significant loading. This theme will investigate the ability of reinforcements including families of 2D materials and other micro and nano fillers in order to enhance stiffness whilst maintaining weight and recoverability. Iteration between models and experiments will ensure that optimise properties are determined. Applications are in marine structures, although a very well-publicised use of syntactic foams was in the football used in the 2006 world cup! Acoustic metamaterials are providing us with new way to manipulate sound. This theme builds on the recent work of the principal investigator's team where, together with an industrial partner he developed and subsequently built microstructured materials that were able to simultaneously slow down sound and also ensure that sound could penetrate the structure. This is a highly non-trivial task and the realisation of such a medium means that it can now potentially be employed in applications where it is important to manipulate sound. Classical examples are in sound attenuation devices, which using this approach could be made more compact. This theme will therefore look to better the designs using more complex microstructures and utilise the medium in more complex geometries. Thermal metamaterials are new media that look to manipulate heat flow and temperature fields. Research so been to direct thermal fields so that regions of space fare protected from high temperatures. In many applications associated with thermal efficiency, it is important to ensure uniform temperature distributions in electronic devices or regions of space within those devices. This is difficult to achieve in complex geometries. This project will look to design and realise new thermal metamaterials whose aim is to be deployed in specific complex geometries in order to ensure thermal uniformity and therefore enhanced heat dissipation and thus improved energy efficiency. The public engagement theme will use results from the original Fellowship of the PI, together with new results from the Extension in order to devise a programme of public engagement with the specific remit of widening participation in Mathematics, Science and Engineering. This will be achieved by devising talks and events aimed at School children, using stands and exhibitions at Science fairs, national competitions and web and social media presence in order to reach out to as broad a community as possible. This inter-disciplinary project is ideal for this in the sense that it sits many academic fields, with its core in Applied Mathematics but employing ideas from Materials Science, Chemistry, Engineering and Physics in order to achieve its goals.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.