Powered by OpenAIRE graph
Found an issue? Give us feedback

Technical University Eindhoven

Technical University Eindhoven

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
24 Projects, page 1 of 5
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: 2022.04076.PTDC
    Funder Contribution: 248,854 EUR

    One of the great challenges posed to chemical sensors is the capability to discriminate minute amounts of an analyte against a noisy background, while at the same time providing absolute quantification. In this application, an innovative scheme is proposed for an optical sensor for detection of RNA biomarkers for clinical diagnostics. It is based on the signal amplification of a dye reporter by a gold nanodimer antenna. The conjugation of a dye emitting in the near infrared with a gold nanodimer antenna is sought here to achieve a detection sensitivity at single-molecule level, which can provide for a digital sensor readout. The proof-of-concept will be done for the detection of circulating microRNA’s proposed as disease biomarkers. For this purpose, the gold nanosensors will be integrated into a miniaturized optical microscope, in order to demonstrate its potential as an amplification-free and portable tool to perform medical diagnostics at the point-of-care. Um dos maiores desafios no desenvolvimento de sensores químicos é a capacidade de descriminar quantidades diminutas de um analito em amostras complexas, e ao mesmo tempo providenciar uma quantificação absoluta. Nesta proposta será desenvolvido um esquema inovador para um sensor ótico com capacidade para deteção de biomarcadores de ARN a serem usados em diagnóstico médico. Este sensor é baseado na resposta intensificada da emissão de um corante orgânico por uma nanoantena de ouro. A conjugação de um corante orgânico com emissão no infravermelho próximo com uma nanoantena de ouro permitirá atingir sensibilidade suficiente para a deteção de moléculas únicas e assim conduzirá ao desenvolvimento de um sensor com resposta digital. A prova-de-conceito será realizada com microARN's circulatórios devido ao seu potencial como marcadores para o diagnóstico de doenças, tais como o cancro e doenças cardiovasculares ou neurodegenerativas. Para o efeito, os nano-sensores de ouro serão integrados num microscópio miniaturizado, de modo a demonstrar o seu potencial para a deteção direta destes ácidos nucleicos com vista à sua aplicação em testes rápidos e portáteis para diagnóstico médico.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E042023/1
    Funder Contribution: 545,835 GBP

    Software systems are rarely written from scratch: they evolve over long periods of time. When a change is made, this often affects many different locations in a system, and it is hard to make a change consistently. For that reason, automated tools to help the process of software change are desirable. Refactoring refers to the process of restructuring an existing piece of software, often prior to introducing new functionality, or to take advantage of a new technology. Refactoring must preserve the behaviour of existing code;,and tools that help in refactoring both assist in the restructuring process and in checking that the behaviour has not changed. Unfortunately today's refactoring tools are very hard to construct, they are still quite limited in functionality, and they often contain bugs.This project aims to construct a framework for better refactoring tools. In particular, the work is driven by refactorings for a new set of language features, called `aspect-oriented programming' that have recently been added to Java.Our framework will be based on developments in three separate areas of computer science:* `strategies' to control the process of rewriting program code, from the `term rewriting' community* `reference attribute grammars' to specify the conditions that guarantee behaviour is preserved, from the `compilers' community* `incremental evaluation' of declarative rules, from the `functional and logic programming' communityThe quality of our framework will be assessed by coding selected case studies using alternative methods. In particular, we shall implement several refactorings directly in Eclipse, the leading development environment for writing aspect-oriented programs in industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R044163/1
    Funder Contribution: 429,829 GBP

    The government commitment to reduce emissions (Climate Change Act 2008 and now the Clean Growth Strategy 2017) and the resulting ambitious targets for renewable energy production requires novel approaches towards efficient production of non-intermittent electricity from renewable sources that can compensate for the closure of fossil fuel power plants around the UK. Reverse electrodialysis (RED) is a "blue" non-intermittent energy technology involving salinity gradient energy, with importance to the UK's future renewable energy mix. RED has been relatively neglected to date, hence, a systematic evaluation of its potential based on innovative materials is urgently needed. Electricity is generated when waters of different salinities (saltiness) are mixed inside an electrochemical RED cell stack (can involve industrial waste streams). A recent conservative assessment of global salinity gradient power (SGP) potential indicates that 625 TWh per year of electricity is practically extractable from river mouths globally (3% of global electricity consumption). RED cells contain multiple pairs of anion-exchange membranes (AEM) and cation-exchange membranes (CEM). The materials development aspect of this project will focus on the development of high performance AEMs and their application in RED cells (including those supplied with real-world, non-sterile waters). These will be compared to commercial benchmark AEMs. The project will focus on AEMs because CEMs (intended for RED application) were developed as part of a previous EPSRC grant [EP/I004882/1]; there is also less diversity of chemistries available for CEMs, compared to AEMs, which is why the latter requires a more dedicated research project. A wide range of AEMs will be synthesised using the electron-beam radiation-grafting technique. We will also explore the use of sonochemistry during the grafting stage, both in combination with and without the use of the electron-beam. The RED cell performance data will also be compared to single ion-transport data (experimental and modelling) as well as data from modelling of RED cell engineering configurations. Accurate modelling of the RED stack is crucial in order to estimate the realistic potential of RED in a future UK energy mix. The modelling activities will be further extended to take into consideration the real scalability of the process in terms of potential contribution to the UK energy demand. The integration of data on the availability and locations of fresh water and saline waste streams (e.g. waste streams from industry) with the accurate model of the RED system will produce a precise map of the technology potential at different sites. This activity will then lead to the identification of potential integrations of the process according to the available streams: i.e. once you know where you have fresh water (and how much) you can calculate how much electricity you can actually produce. Furthermore, when an alternative (e.g. industrial) saline waste stream is located close to a fresh water body, this avoids the limitations when using seawater (in terms of coastal location and the magnitude of the salinity gradient). For cost effectiveness, this project will fully utilise membrane characterisation and RED cell testing equipment that have been purchased/established using funds from prior related EPSRC and EU projects. For maximum transparency, all resulting open access publications (CC-BY) will include DOI locators to facilitate open access to the project's (non-IP-protected) raw data. The project will be used to establish new intra-UK and UK-Dutch research collaborations that should lead to additional links to other UK and EU networks.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y003144/1
    Funder Contribution: 166,483 GBP

    This ECR international collaboration grant is aiming to build an international network and research hub together with the pioneering research on active integrated antennas for intelligent arrays in the emerging 6G non-terrestrial networks, to realize and boost the new telecommunication era of the internet of everything and the connection of everywhere. Regarding the B5G (5G-beyond) and 6G, there are still quite a number of challenges waiting to be solved. One of the most important issues is the power efficiency of the millimeter-wave (mmW) systems, so as to the mmW active antenna systems. According to the telecommunications company Ericsson's predictions, the market for the service providers in the 5G area will grow to around USD 700 billion by 2030. Thus there will be a huge market and demand of mmW active antenna systems especially for the massive MIMO systems, which requires at least 64 antenna elements (an 8 by 8 array). However, the current power amplifiers on market only offer a power-added efficiency around 22%, leading to significant energy into waste like the heat, which will destroy and reduce the operation life of the devices too. Hence, this project is dedicated to improve the power efficiency of the mmW array antennas by proposing a novel substrate integrated active array antennas, which is of great advantages in terms of manufacturing, cost and scalability. An additional technique of the active antenna in substrate packaging (AAiSP) will be explored to increase the application flexibility for the 6G service providers. Moreover, align with the EPSRC strategy plan 2022-2025 on the priority mission of AI, a machine leaning based precoding technology will be developed to optimize the mmW non-linear array antennas. This project integrates two ongoing Marie Sklodowska-Curie Actions projects ANTERRA and HARMONY, both are dedicated to exploring the directly matched power amplified antennas and arrays. The PI also actively interacts with the EurAAP working group of Active Array Antennas. The collaboration project enables the PI actively working with and centered by experienced academics and engineers from the USA, France and Netherlands, leading the PI, his institute and the UK to be the world-class people, organization and place with world-class innovation, so as to be a world leader, which is also the vision of the latest EPSRC strategy plan.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K031546/1
    Funder Contribution: 543,113 GBP

    High blood pressure, or hypertension, is one of the most important causes of global morbidity and mortality in the developed world [1]. It has been shown that hypertensive people have a high risk of stroke, heart attack, heart failure and renal failure. The Health Survey for England in 2006 demonstrated that the prevalence of hypertension in the UK increased from 17% in the age group 40-49 years to 77% in those aged 70-79 years [2]. Hypertensive patients are usually identified by a threshold diagnosis of their systolic or diastolic pressures exceeding 140 or 90 mmHg respectively. However this diagnosis tends to misdiagnose the individuals in the large population in and around the threshold making the selection for appropriate therapy difficult. For example one important determinant of hypertension is the flexibility of the aorta (the first artery leading from the heart), which becomes stiffer with age and arteriosclerosis. However, such "stiffness" is only one among other geometrical and mechanical factors that influence the pressure pulse and thus hypertension. Therefore, non-invasive measurement of pulse pressure waveforms has been of interest for more than 100 years, and includes tonometry, Ultrasound and Magnetic Resonance Imaging (MRI). Although the non-invasive measurement of waveforms has become fast, the current analysis of the measured waveform data is relatively simplistic. In particular, the analysis of certain waveform features are performed in isolation and are impeded by a lack of understanding of the relative contributions from arterial stiffness/geometry, wave reflection and ventricular/arterial interaction to hypertensive pressure. Over the last two decades, computational modelling has been established as a new discipline to study the interaction of different parameters in the cardiovascular system. These models can help to separate the various contributions to the pressure waveform and elucidate complex interaction of parameters affecting hypertension. More recently, imaging data of the patient's anatomy and physiology has been introduced in numerical simulations to produce patient-specific models. Although, different models have been developed to investigate the influence of geometrical and mechanical factors, a model validation remains challenging since it would require large studies in animals and patients. This proposal aims at the identification of high-risk individuals by determining the mechanical factors which cause their pressure to be pathological. This approach would allow a better selection of appropriate treatments for the individual patient. For this, we propose the construction of a comprehensive experimental arterial model with which to determine and quantify main contributors to hypertensive pressure as well as to validate our existing computational arterial simulation frameworks (1D and 3D). Translation of these technologies towards the clinic will be facilitated with the construction of full-scale silicone arterial model, which will experimentally simulate haemodynamics of a hypertensive patient dataset. This will be followed by a clinical validation of a computational analysis tools in volunteers and a small patient cohort. References: [1] MacMahon, S., et al.: Blood-pressure-related disease is a global healthy priority. Lancet, 2006. 371: p. 1480-1482. [2] NHS, Health survey for england 2006 latest trends. 2008: Leeds.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.