Powered by OpenAIRE graph
Found an issue? Give us feedback

Shanghai Baosteel Group Corporation

Country: China (People's Republic of)

Shanghai Baosteel Group Corporation

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: BB/L01081X/1
    Funder Contribution: 25,510 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G042594/1
    Funder Contribution: 860,747 GBP

    The Chinese 11th Five-Year Plan considers Sustainable Energy Supply and Sustainable Built Environment as crucial for achieving sustainable development. Recognising the potential benefits, the UK government has actively encouraged international collaborations with China. Two Engineering Schools at Queen's University Belfast (QUB), with internationally recognised research excellence in the Built Environment and in Electric Power & Control, have taken used these opportunities to collaborate with a number of, geographically distributed, leading Chinese universities, research institutions and industries. This effort has been supported by the EPSRC, the Royal Society & the Royal Academy of Engineering, and includes a 1M EPSRC grant for a UK-China joint consortium on sustainable electric power supply and a 220K EPSRC project to run UK-China Network of Clean Energy Research to promote SUPERGEN (Sustainable Power Generation and Supply) in China. Some QUB technologies have also been tested in major construction projects, such as the Beijing National Olympic Stadium (Bird's Nest) and the Hangzhou Bay Sea-Crossing Bridge (longest such bridge in the world). The applicants aim to enhance their science innovation and technology transfer activities in both China and the UK helped by their 7 university partners (principally Tsinghua University, # 1 in China & Zhejiang University, #3 in China, the others being Chongqing, Shanghai Jiaotong, Southeast, Shanghai and Hunan), 3 Chinese research institutions (Central Research Institute of Building & Construction CRIBC, the Chinese Academy of Sciences Institute of Electrical Engineering, and the Research Institute of Highways). The China State Railway Corp. (largest under Ministry of Railways), the China State Construction Corporation (largest under Ministry of Construction), Bao Steel Corporation (largest in China, #6 in world sales) and Shanghai Electric Group (largest in China) are the main 4 Chinese industrial partners. Complementary UK support includes Amphora NDT Ltd, Macrete and SUPERGEN.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016273/1
    Funder Contribution: 3,523,090 GBP

    Metallic materials are used in an enormous range of applications, from everyday objects, such as aluminium drinks cans and copper wiring to highly-specialised, advanced applications such as nickel superalloy turbine blades in jet engines and stainless steel nuclear reactor pressure vessels. Despite advances in the understanding of metallic materials and their manufacture, significant challenges remain. Research in advanced metallic systems helps us to understand how the structure of a material and the way it is processed affects its properties and performance. This knowledge is essential for us to develop the materials needed to tackle current challenges in energy, transport and sustainability. We must learn how to use the earth's resources in a sustainable way, finding alternatives for rare but strategically important elements and increasing how much material we recycle and reuse. This will partly be achieved through developing manufacturing and production processes which use less energy and are less wasteful and through improving product designs or developing and improving the materials we use. In order to deliver these new materials and processes, industry requires a lot more specialists who have a thorough understanding of metallic materials science and engineering coupled with the professional and technical leadership skills to apply this expertise. The EPSRC Centre for Doctoral Training in Advanced Metallic Systems will increase the number of metallurgical specialists, currently in short supply, by training high level physical science and engineering graduates in fundamental materials science and engineering in preparation for doctoral level research on challenging metallic material and manufacturing problems. By working collaboratively with industry, while undertaking a comprehensive programme of professional skills training, our graduates will be equipped to be tomorrow's research leaders, knowledge workers and captains of industry.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.