Powered by OpenAIRE graph
Found an issue? Give us feedback

Heraeus Electro-Nite

Country: United Kingdom

Heraeus Electro-Nite

5 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/F059728/1
    Funder Contribution: 131,519 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F059159/1
    Funder Contribution: 300,291 GBP

    Carbon-containing refractory bricks (CCRBs) are one of the most important materials for the iron and steel industry worldwide, e.g. Corus alone spends over 200M/annum on refractories of which 70-80% are carbon-containing refractories. However, their two critical drawbacks, poor oxidation resistance and poor mechanical properties (low mechanical strength and poor erosion resistance), significantly reduce their service life in many applications. Whilst the poor oxidation resistance can now be improved via additions of antioxidants and/or formation of refractory coatings on graphite, the issue of poor mechanical properties has yet to be solved. In this programme, based upon the applicants' extensive experience in R & D of refractories and expertise on nanofibre/tube fabrication, the design and development of a novel and commercially-viable catalytic-growth technique is proposed that can create large quantities of in-situ carbon nanotubes in CCRBs, aiming to improve substantially their mechanical strength and erosion resistance (by >50%) and service durability (by >25%). This programme, in addition to its academic significance for in-situ nanostructure design, will undoubtbly benefit the refractory and steel industries by providing high quality refractory materials at low-cost.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F059728/2
    Funder Contribution: 72,224 GBP

    Carbon-containing refractory bricks (CCRBs) are one of the most important materials for the iron and steel industry worldwide, e.g. Corus alone spends over 200M/annum on refractories of which 70-80% are carbon-containing refractories. However, their two critical drawbacks, poor oxidation resistance and poor mechanical properties (low mechanical strength and poor erosion resistance), significantly reduce their service life in many applications. Whilst the poor oxidation resistance can now be improved via additions of antioxidants and/or formation of refractory coatings on graphite, the issue of poor mechanical properties has yet to be solved. In this programme, based upon the applicants' extensive experience in R & D of refractories and expertise on nanofibre/tube fabrication, the design and development of a novel and commercially-viable catalytic-growth technique is proposed that can create large quantities of in-situ carbon nanotubes in CCRBs, aiming to improve substantially their mechanical strength and erosion resistance (by >50%) and service durability (by >25%). This programme, in addition to its academic significance for in-situ nanostructure design, will undoubtbly benefit the refractory and steel industries by providing high quality refractory materials at low-cost.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F033605/1
    Funder Contribution: 5,434,540 GBP

    We plan to create a world-leading, multidisciplinary, UK Structural Ceramics Centre to underpin research and development of these highly complex materials. Structural ceramics are surprisingly ubiquitous not only in obvious traditional applications (whitewares, gypsum plaster, house bricks, furnace refractories, dental porcelains and hip/knee prostheses) but in hidden applications where their electrical behaviour is also important such as in computers, mobile phones, DVDs etc. Structural ceramics are enabling materials which underpin many key areas of the economy including: energy generation, environmental clean-up, aerospace and defence, transport and healthcare. Key areas where important developments can be made in energy generation include ceramics for plutonium immobilisation and for next generation nuclear reactor fuels, for ion conductors in solid oxide fuel cells, and for storage of hydrogen for the projected hydrogen economy. Porous ceramics need to be developed for heavy metal and radionuclide capturing filters to help with environmental remediation of soil, air and water and for storage of carbon captured from burning fossil fuels. The next generation of space shuttles and other military aircraft will rely on ceramic and composite thermal protection systems operating at over 2000C. Ceramic coatings on turbine blades in aircraft enable them to function at temperatures above the melting point of the metals alloys from which they are mostly made, and improved ceramics capable of operation at even higher temperatures will confer improved fuel efficiency with environmental benefits. Our troops need improved personal body & vehicle armour to operate safely in troubled areas and the latest generation of armour materials will use ceramic laminate systems but improvements always need to be made in this field. Ceramic are used increasingly for bone and tooth replacement with the latest materials having the ability to allow natural bone ingrowth and with mechanical properties close to natural bone. It is clear the improved understanding of the mechanical behaviour of ceramics, better and simpler processing and the ability to model structure-processing-property relations over many length scales will lead to significant benefit not just to the UK but to mankind. Our aim is to combine the capabilities of two internationally-leading Departments at Imperial College London (Materials and Mechanical Engineering) to form the Centre of Excellence. The Centre will act as a focal point for UK research on structural ceramics but will encourage industrial and university partners to participate in UK and international R&D programmes. 51 companies and universities have already expressed the wish to be involved with promised in-kind support at over 900K. Research activities will be developed in three key areas: -Measurement of mechanical properties and their evolution in extreme environments such as high temperatures, demanding chemical environments, severe wear and impact conditions and combinations of these.-High Temperature Processing and Fabrication. In particular, there is a need for novel approaches for materials which are difficult to process such as borides, carbides, nitrides, materials with compositional gradients and ceramic matrix composites (CMCs). -Modelling of the time-dependence of deformation and fracture of ceramics to predict the useful lifetime of components. The modelling techniques will vary from treating the material as a homogeneous block down to describing the atomic nature of the materials and links between these approaches will be established.In addition to providing the funding that will enable us to create the nucleus from which the centre can grow, mutually beneficial relations with industry, universities and research centres in the UK and abroad will be developed to ensure that a large group of researchers will remain active long after the period for which funding is sought will have ended.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V054627/1
    Funder Contribution: 4,836,820 GBP

    The Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.