Powered by OpenAIRE graph
Found an issue? Give us feedback

HMG

Government of the United Kingdom
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
557 Projects, page 1 of 112
  • Funder: UK Research and Innovation Project Code: EP/V007866/1
    Funder Contribution: 1,418,890 GBP

    The acoustics industry contributes £4.6 billion to the UK's economy annually, employing more than 16,000 people, each generating over £65,000 in gross value added across over 750 companies nationwide. The productivity of acoustics industry is similar to that of other enabling technologies, for example the UK photonics industry (£62k per employee in 2014). Innovation through research in acoustics is a key to its industry success. The UK's acoustics industry and research feeds into many major global markets, including the $10 billion market for sound insulation materials in construction, $7.6 billion ultrasound equipment market and $31 billion market for voice recognition. This is before the vital role of acoustics in automotive, aerospace, marine and defence is taken into consideration, or that of the major UK industries that leverage acoustics expertise, or the indirect environmental and societal value of acoustics is considered. All the four Grand Challenges identified in the 2017 UK Industrial Strategy require acoustics innovation. The Industrial Strategy Challenge Fund (ISCF, https://www.ukri.org/innovation/industrial-strategychallenge-fund/) focuses on areas all of which need support from acoustics as an enabling technology. The future of acoustics research in the UK depends on its ability to contribute to the Four Grand Challenges. Numerous examples are emerging to demonstrate the central role of acoustics in addressing the four Grand Challenges and particularly through more focused research. The acoustics-related research base in the UK is internationally competitive, but it is important to continue to link this research directly to the four Grand Challenges. In this process, the role of UK Acoustics Network (UKAN) is very important. The Network unites over 870 members organised in 15 Special Interest Groups (www.acoustics.ac.uk) who represent industry, academia and various non-academic organisations which success relies on the quality of acoustics related research in the UK. UKAN was funded by the EPSRC as a standard Network grant with the explicit aim of pulling together the formerly disparate and disjoint acoustics community in the UK, across both industry and academia. UKAN has been remarkably successful. Its success is manifested in the large number of its members, numerous network events it has run since its inception in November 2017 and contribution it has made to the acoustics research community. Unfortunately, UKAN has not been in the position to fund new, pilot adventurous or translational projects nor has it any funding support for on-going research or knowledge transfer (KT) activities. The purpose of UKAN+ is to move beyond UKAN, create strategic connections between acoustics challenges and the Grand Challenges and to tackle these challenges through pilot studies leading in turn to full-scale grant proposals and systematic research and KT projects involving a wider acoustics community. There is a great opportunity for the future of the UK's acoustics related research to move on beyond this point, build upon the assembled critical mass and explore the trans-disciplinary work initiated by UKAN. Therefore, this proposal is for UKAN+ to take this community to the next stage, connect this Network more widely in the UK and internationally to contribute through coordinated research to the solution of Grand Challenges set by the government. UKAN+ will develop a new roadmap for acoustics research in the UK related to Grand Challenges, award exploratory (pilot) cross-disciplinary research projects to the wider community to support adventure research and knowledge transfer activities agreed in the roadmap and support the development of develop full-scale bids to the government research funding bodies which are aligned with the Grand Challenges. UKAN+ will also set up a National Centre or Coordination of Acoustics Research, achieve full sustainability and support best Equality, Diversity and Inclusion practices.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/I021063/1
    Funder Contribution: 98,403 GBP

    Disease and contaminants both pose major risks to wildlife and Man. This is well recognised and there are a variety of surveillance schemes in the UK that monitor wildlife for occurrence and severity of diseases and/or contaminants. These schemes complement rather than duplicate each other but share many operational procedures and so can face similar challenges. The information gathered from each surveillance scheme is communicated to a wide spectrum of end users. The various surveillance schemes are run by different government agencies and laboratories, research centres, institutes and Universities. The funders of the schemes are an equally diverse range of government departments, agencies and industry. A key difficulty caused by this myriad of researchers and funding organisations is that it hampers communication between schemes. The schemes only have opportunistic and ad hoc mechanisms to exchange knowledge or develop common best practices that would facilitate sharing of samples and data. Such cooperation can also be hampered by differences between funders in the priorities that they wish surveillance schemes to address. Furthermore, because each scheme reports its findings largely in isolation, it is difficult for end users to obtain an overview of common or widespread threats. The main aim of this project is to establish a Wildlife Disease & Contaminant Monitoring & Surveillance (WILDCOMS) network. This will provide a partnership between nine current UK contaminant and disease surveillance schemes. The network will foster and facilitate knowledge exchange, harmonisation towards best practice, collaboration and sharing of resources. It will also enhance and widen communication with and between end-users, and in particular will provide end-users with an holistic overview of environmental disease and contaminant risk. This should make identification of emerging hazards and risks easier and quicker to spot, and provide the more integrated scientific evidence base needed to formulate better and timely policy and regulation. The specific objectives, delivered in four work packages, will be: (i) to establish and develop the network through regular partners meetings (ii) to use the network to maximise communication of integrated surveillance information to a wide range of end-users through an annual Stakeholder Forum and through collation of findings from all schemes into web-based quarterly bulletins (iii) development towards harmonised operational procedures (sample collection, measurement, data recording and sample archiving) that will facilitate sharing and collaboration between schemes and eliminate duplication of effort (iv) to develop a sustainable model for WILDCOMS and extend its scope to a European scale through linkage with key European partners and networks WILDCOMS will thus facilitate sharing of skills, expertise, knowledge, samples and data, thereby maximising the use of available resources. This will result in better value for money overall and foster development of new initiatives. The benefits the network will deliver can be summarised as: (a) ntegrated surveillance leading to an improved scientific evidence base with which regulators and policy makers can assess threats to wild vertebrates and human health (b) better long term management, sharing and dissemination of samples, best practice and data (c) a recognised forum that will facilitate discussion and collaboration between surveillance schemes and different end-users and stakeholders (d) an enhanced UK research base by increasing knowledge through scientific publications and greater awareness of activities and specimen archives (e) benefits for industrial end users including potential for averting costs by preventing problems (f) benefits to quality of life to the through improved risk assessment

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/I035781/1
    Funder Contribution: 415,369 GBP

    The resilience of GB's electricity energy network is being challenged on three fronts: (i) policies aimed at reducing greenhouse gas emissions through decarbonising energy supply will alter substantially the existing supply mix; (ii) decarbonising of the 'energy' system will likely involve considerable shift of previously non-electric energy demand onto the electricity network with accompanying changes in how much electricity is needed and when it is needed; and (iii) the expected mean changes in climate will alter the electricity demand and performance of electricity infrastructure, and increased severity and frequency of extreme weather events will impact on the electrical network and distribution systems.To address these multiple challenges, the RESNET project (Resilient Electricity Networks for Great Britain) will develop and demonstrate a comprehensive systems-level approach to analysing the resilience of the existing and proposed electricity networks. It will develop, test and refine tools for evaluating adaptation measures designed to enhance the resilience of the network including societal and technical adaptation. The work will consist of 5 work packages (WPs).WP1 will produce future climate scenarios for three key weather variables where changes in average characteristics can impact on the operational resilience of the network and changes in extremes can impact the infrastructural resilience of the network: temperature (and solar radiation), rainfall (with associated flooding) and wind. WP2 will develop electricity demand and supply scenarios, consistent both with the climate change impacts scenarios from WP1, and levels of decarbonisation required to meet policy targets. WP3 will couple the hazard model from WP1 with demand and supply scenarios from WP2 with a dynamic, spatially explicit, power systems simulation model. WP4 will use the model to quantify the potential impacts of future climate upon the day to day (operational) resilience and resilience to extreme events (infrastructure network resilience) of the overall GB electricity transmission system (i.e. the National Grid), and case study distribution networks. Against these infrastructure, demand and climate futures we will test the effectiveness of a wide range of adaptation options for improving the overall resilience of the energy system. Adaptation is not seen here as a purely technical activity but should consider societal adaptation where by consumers change their practices to cope with changing levels of network reliability. WP5 will assess the impact of the future vulnerability of the network upon organisations and households, taking into account climate change impacts, and consider how these may adapt.Contemporary UK society has grown accustomed to a reliable supply of electricity with any interruption to supply typically considered, socially, politically and economically undesirable, almost regardless of the technical and economic implications of maintaining such high levels of integrity. This expected level of service places further constraints on an electricity network already facing multiple challenges. Ultimately, if the UK's energy system is to achieve the urgent and rapid mitigation implied by the Government's 2 deg C commitment, the electricity system will have to undergo profound changes over the short, medium and long term. Pivotal to a successful and rapidly decarbonising electricity system is a transmission and distribution network that is resilient to climate change impacts, capable of balancing different types of low carbon supply in the context of a changing demand profile. Early and integrated analysis of these systemic challenges will pay significant dividends in developing an affordable, robust and low carbon electricity system resilient to the direct and indirect impacts of changing environmental and socio-economic drivers.

    more_vert
  • Funder: European Commission Project Code: 603378
    more_vert
  • Funder: European Commission Project Code: 318722
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.