Powered by OpenAIRE graph
Found an issue? Give us feedback

NCEPU

North China Electric Power University
8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: EP/R010986/2
    Funder Contribution: 77,664 GBP

    Converting biomass waste to bio-products will simultaneously provide a route to waste-disposal, and a process for the production of useful, economically attractive products. Within all the products derived from biomass waste, liquid hydrocarbon transport fuels are promising for the UK to meet its 2020 renewable energy target of providing 10% of its transport fuel from renewable sources. They will help to tackle the challenges of climate change and the ever-increasing fuel demand. The current waste-to-liquid technologies, however, are facing main problems of high production cost and technical uncertainty. To address these problems, we will develop a breakthrough technology in this project. This novel technology will co-produce liquid transport bio-fuel and one value-added bio-chemical. By doing this, high economic profits will be expected when comparing with conventional liquid bio-fuel plants. The co-production system will additionally benefit to the reduction of the biofuel's high oxygen content, which is known as the main source that leads to poor stability, immiscibility and low calorific value of the produced fuel. The integrated production system will be designed and evaluated within this project, with the involvement of three universities (Queen's University Belfast-QUB, Aston University-AU, and North China Electric Power University-NCEPU), three academics, one PDRA, and two PhDs (one is funded by QUB, the other is funded by NCEPU). The project is also highly industrial geared by directly involvement of two UK-based companies: Hirwaun Energy Ltd, who will provide a pilot scale biomass pyrolysis reactor for results validation, and Green Lizard Technologies Ltd, who will provide suggestions on the technology scale-up. Through the development of this innovative technology, high national impact will be realised to achieve the UK's 2020 Renewable Energy targets through the conversion of over 16 million tonnes per year of the UK's lignocellulosic biomass into advanced fuel together with value-added co-products. It will also have a positive impact on the UK's target of reducing carbon dioxide emissions and increasing the use of renewable materials.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G062889/2
    Funder Contribution: 593,659 GBP

    By 2015, the UK is expected to face an electrical power shortage of over 20GW, based on projected economic growth and projected life expectancy of a number of existing power plants. There is currently an exceptionally wide variety of new generation technologies being considered. Nuclear power generation will take a long time from build to generation; in fact, the earliest estimated time of generation from new nuclear power stations would be 2018. Renewable energy alone is not capable of generating enough electricity to fill this gap. Around 40% of the current electricity is generated by gas/oil in the UK, but the price of gas/oil faces a huge fluctuations and uncertainty. So gas/oil is not the suitable choice to fill the big electricity generation capacity gap. To meet the various requirements in electricity demand, environment, finance and performance, coal fired power generation is really in need, actually the realistic choice, for compensating the generation gap. Plans have been made for new coal-fired power stations to be built in the UK in the near future. In China, more than 70% of electricity is currently generated by Coal. New coal fired power stations bring into generation almost every month in China. In American, 335,830MW electricity is generated by coal. It is likely that coal remains a dominant fuel for electricity generation from many years to come. Coal is, no doubt, playing an important role in electrical power generation but we must make it cleaner. Supercritical coal fired plant technology is one of the leading options with improved efficiency and hence reduced CO2 emissions per unit of electrical energy generated. Indeed, power plants using supercritical generation have energy efficiency up to 46%, around 10% above current coal fired power plants. On the other hand, this technology costs less than other clean coal technologies and can be fully integrated with appropriate CO2 capture technology in a timely manner. In addition to higher energy efficiency, lower emission levels for supercritical plants are achieved by using well-proven emission control technologies. However, power plants adopting supercritical boilers face great challenges from the UK National Grid Code (NGC) compliance. The UK grid code is far more demanding than in other European countries due to the relatively small scale of the UK electricity network. The most significant issue for a supercritical steam plant is the absence of the stored energy provided by the drum of a conventional plant. As a result the plant would struggle to produce the 10% frequency response requirement in the Grid Code quickly enough Ensuring NGC compliance for supercritical boiler power generation is an important pre-requisite for gaining acceptance in the UK for this highly promising cleaner coal technology. The generation companies have already proposed the Grid Code review request to NGC for the possibility of grid code change to accept supercritical plant There is an urgent demand to conduct the whole process modelling and simulation study to get a clearer picture of the dynamic responses of the supercritical coal fired power plant and to study the feasible strategy to improve the dynamic responses. Also, it is essential to establish the university based research capacity in the UK to provide research solutions in response to the challenges arising from adopting supercritical technology in electrical power generation and also to provide the training needed for future electrical power engineers. Currently, no supercritical or ultra-supercritical boilers operate in the UK, which make it difficult for UK researchers alone to conduct the above proposed study. There are more than 400 such units worldwide, with China operating 24 of them and more to be built. So this proposal is proposed to collaborate with Chinese top universities for this challenging research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R010986/1
    Funder Contribution: 100,984 GBP

    Converting biomass waste to bio-products will simultaneously provide a route to waste-disposal, and a process for the production of useful, economically attractive products. Within all the products derived from biomass waste, liquid hydrocarbon transport fuels are promising for the UK to meet its 2020 renewable energy target of providing 10% of its transport fuel from renewable sources. They will help to tackle the challenges of climate change and the ever-increasing fuel demand. The current waste-to-liquid technologies, however, are facing main problems of high production cost and technical uncertainty. To address these problems, we will develop a breakthrough technology in this project. This novel technology will co-produce liquid transport bio-fuel and one value-added bio-chemical. By doing this, high economic profits will be expected when comparing with conventional liquid bio-fuel plants. The co-production system will additionally benefit to the reduction of the biofuel's high oxygen content, which is known as the main source that leads to poor stability, immiscibility and low calorific value of the produced fuel. The integrated production system will be designed and evaluated within this project, with the involvement of three universities (Queen's University Belfast-QUB, Aston University-AU, and North China Electric Power University-NCEPU), three academics, one PDRA, and two PhDs (one is funded by QUB, the other is funded by NCEPU). The project is also highly industrial geared by directly involvement of two UK-based companies: Hirwaun Energy Ltd, who will provide a pilot scale biomass pyrolysis reactor for results validation, and Green Lizard Technologies Ltd, who will provide suggestions on the technology scale-up. Through the development of this innovative technology, high national impact will be realised to achieve the UK's 2020 Renewable Energy targets through the conversion of over 16 million tonnes per year of the UK's lignocellulosic biomass into advanced fuel together with value-added co-products. It will also have a positive impact on the UK's target of reducing carbon dioxide emissions and increasing the use of renewable materials.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G062889/1
    Funder Contribution: 725,442 GBP

    By 2015, the UK is expected to face an electrical power shortage of over 20GW, based on projected economic growth and projected life expectancy of a number of existing power plants. There is currently an exceptionally wide variety of new generation technologies being considered. Nuclear power generation will take a long time from build to generation; in fact, the earliest estimated time of generation from new nuclear power stations would be 2018. Renewable energy alone is not capable of generating enough electricity to fill this gap. Around 40% of the current electricity is generated by gas/oil in the UK, but the price of gas/oil faces a huge fluctuations and uncertainty. So gas/oil is not the suitable choice to fill the big electricity generation capacity gap. To meet the various requirements in electricity demand, environment, finance and performance, coal fired power generation is really in need, actually the realistic choice, for compensating the generation gap. Plans have been made for new coal-fired power stations to be built in the UK in the near future. In China, more than 70% of electricity is currently generated by Coal. New coal fired power stations bring into generation almost every month in China. In American, 335,830MW electricity is generated by coal. It is likely that coal remains a dominant fuel for electricity generation from many years to come. Coal is, no doubt, playing an important role in electrical power generation but we must make it cleaner. Supercritical coal fired plant technology is one of the leading options with improved efficiency and hence reduced CO2 emissions per unit of electrical energy generated. Indeed, power plants using supercritical generation have energy efficiency up to 46%, around 10% above current coal fired power plants. On the other hand, this technology costs less than other clean coal technologies and can be fully integrated with appropriate CO2 capture technology in a timely manner. In addition to higher energy efficiency, lower emission levels for supercritical plants are achieved by using well-proven emission control technologies. However, power plants adopting supercritical boilers face great challenges from the UK National Grid Code (NGC) compliance. The UK grid code is far more demanding than in other European countries due to the relatively small scale of the UK electricity network. The most significant issue for a supercritical steam plant is the absence of the stored energy provided by the drum of a conventional plant. As a result the plant would struggle to produce the 10% frequency response requirement in the Grid Code quickly enough Ensuring NGC compliance for supercritical boiler power generation is an important pre-requisite for gaining acceptance in the UK for this highly promising cleaner coal technology. The generation companies have already proposed the Grid Code review request to NGC for the possibility of grid code change to accept supercritical plant There is an urgent demand to conduct the whole process modelling and simulation study to get a clearer picture of the dynamic responses of the supercritical coal fired power plant and to study the feasible strategy to improve the dynamic responses. Also, it is essential to establish the university based research capacity in the UK to provide research solutions in response to the challenges arising from adopting supercritical technology in electrical power generation and also to provide the training needed for future electrical power engineers. Currently, no supercritical or ultra-supercritical boilers operate in the UK, which make it difficult for UK researchers alone to conduct the above proposed study. There are more than 400 such units worldwide, with China operating 24 of them and more to be built. So this proposal is proposed to collaborate with Chinese top universities for this challenging research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/F061242/2
    Funder Contribution: 149,558 GBP

    The consortium submitting this proposal stems from the UK-China Network on Clean Energy Research that was setup by Prof. Haifeng Wang in January 2007 with 202k of financial support from EPSRC under its INTERACT 4 scheme. The goal of the Network is to disseminate and promote in China the research that the EPSRC SUPERGEN consortia have carried out in the UK. The proposed consortium thus extends the scope of the Network to the organisation of joint research between the UK SUPERGEN researchers and leading Chinese scientists of nationally funded research programmes. It is thus built on the basis of an existing link between members of the Network, Chinese universities and the Chinese Academy of Sciences. It also expands this collaboration to the two largest research institutes in power engineering in China: the China Electric Power Research Institute (EPRI) and the Nanjing Automatic Research Institute (NARI). All of the 9 UK investigators play a leading role in one or more of six SUPERGEN consortia that are sponsored by EPSRC to carry out focused collaborative programmes of research on various aspects of sustainable energy systems.Even though the power systems of the UK and China are at different stages of development, the issue of how to maintain security while accommodating an increasing amount of renewable generation capacity is an important concern in both countries. To achieve sustainable economic growth, these power systems will need to become more flexible and more robust. Engineers and scientists in the UK and China have complementary expertises in this area. Researchers in the UK have done a significant amount of work in recent years on renewable energy sources and their integration with the grid. On the other hand, security analysis and security enhancements techniques have been central R&D issues in China. Combining these expertises and facilitating a two-way transfer of knowledge would therefore clearly accelerate the pace of research on problems of common interest. We therefore propose to bring together the leading power system scientists from the UK SUPERGEN consortia and from the Chinese nationally funded projects to form a collaborative research team to study the sustainable security of power systems. Being able to assess and enhance the security of power systems is a key issue in the development of sustainable power systems. It is also a long-standing and complicated scientific and engineering problem with considerable breadth and depth. This proposal integrates 8 joint research projects that tackle the problem from the four most important perspectives, i.e., security analysis (JP1 and 2), renewable generation (JP7 and 8), protection (JP3 and 4) and control (JP4, 5 and 6). Two core projects, JP1 and 2, will develop new models and analytical methods for gaining a better understanding of power system sustainable security. They require input and support from JP7 and 8 on renewable generation and provide guidelines and tools to JP3, 4, 5 and 6 to enhance the sustainable security through power system protection and control. The contribution of the Chinese collaborators will be very significant as they have a strong experience with engineering practice and they have access to advanced experimental facilities that are not available in the UK. They have committed 4 post-doctoral researchers and 13 PhD students to work on the joint projects . These researchers are fully funded from sources in China. The Chinese collaborators have also pledged to seek further financial support in China to contribute to the Consortium if this application is successful. The proposed consortium has designed 3 schemes to ensure a two-way UK-China knowledge transfer through this collaboration. They are major dissemination events, UK-China training exchange and project meetings. The project will start on the 1st Oct. 2008 and run for 4 years.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.