Powered by OpenAIRE graph
Found an issue? Give us feedback

Emilio Goeldi Museum

Country: Brazil

Emilio Goeldi Museum

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: ES/M011542/1
    Funder Contribution: 49,429 GBP

    This research partnership will build and strengthen scientific collaboration between UK and Brazilian researchers. Our team will work together to develop new, innovative research in order to reduce the vulnerability of Amazonian cities to extreme climatic events, such as floods and droughts. We hope that this research enables decision-makers in Brazil to identify those cities that need humanitarian assistance most during climate emergencies, and also build long-term resilience (capacity to absorb these shocks) to floods and droughts. Our team members come from various academic disciplines, including statistics, health science, economics, environmental social science, and spatial modelling. We will use secondary data sources to examine how adaptive capacity, local institutions and natural hazard exposure (the occurrence of droughts and floods) influence the negative impacts of these climate events on the well-being of people living in Amazonian cities. We are also interested in how extreme climatic events may influence food prices in these cities, which has implications for the affordability of food for the poorest city-dwellers. Our network also involves local citizens, and we will work with a range of community members in our focal cities in order to make sure that are research is locally-relevant and useful. Finally, we are investing significant effort in improving career opportunities for Amazonian scientists, and will achieve this through UK-Brazil researcher exchange, and workshops to train Masters and PhD students in the UK and Brazil.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/M017656/1
    Funder Contribution: 269,691 GBP

    'Learning from the past to inform the present and inspire the future' - Atkins Group The anthropologic and archaeological study of pre-Columbian people of the Amazon Basin has revealed sophisticated agricultural practices. Notwithstanding the absence of historical written records, the biological evidence of these practices remains in the remarkable soils referred to as Amazonian 'dark earths' (ADEs), or "Terra Preta do Indio", produced by these ancient civilisations to promote highly productive and sustainable agriculture. With increasing global demand for food, energy and carbon, it is crucial to understand and learn from past land use systems. We can also learn from the influence of these historical practices on the associated biodiversity in order to appropriately manage the current and plan the future land uses. This understanding is essential for both economic and environmental sustainability, and to provide for the needs and aspirations of current and future generations, while simultaneously conserving the ecological fidelity of the resource base on which they depend. This is particularly important with respect to soils and their intrinsic and diverse living organisms, because they sustain plant production (thus, they are at the base of the human food production chain), and have important consequences for water quality and availability. Furthermore, soils are a vast storehouse for biodiversity including many invertebrate species that contribute a number of essential ecosystem services, although most of these species remain mostly unknown, unseen and disregarded. By promoting the interdisciplinary connection between anthropology/archaeology, soil ecology and genomics, we will be able propose to integrate and harness the research expertise of internationally renowned scientists to investigate both the relationship of ADEs to the associated extant biodiversity, reveal details of past and current anthropogenic impact on the natural surroundings, as well as new clues regarding settlement dynamics over a large part of Brazil. Therefore, this project's intention is to contribute to the knowledge of soil animal biodiversity and its relationship with soil fertility and land use changes in a mega-diverse biome (Amazonia). Our objectives will be accomplished by: 1. Assessing the current soil biodiversity assemblages to gain knowledge about the functioning and potential role of soil ecosystem engineers, organic matter and nutrients to the formation of these extremely fertile soils; this novel approach will aid in understanding the origin and sustainable management of ADEs as well as highly weathered and acid soils under humid tropical conditions. 2. Using DNA barcoding to describe the diversity of the ecosystem engineer community associated with past and recent settlements throughout the Amazonian Basin. 3. Using genomics of a peregrine species closely related with human landscape domestication to mirror the human exchanges and flow among the Neotropical rainforest associated with the migration of Amazonian Indians. This will be achieved by integrating the state-of-the-art methods in The state-of-the-art 'tools' that the collaborating network of scientists will bring to bear on the study objectives include invertebrate morphology, molecular genetics, and computational analyses with incorporation of pre-existent and new ecological, anthropological and environmental metadata. Furthermore, the proposed project will establish a collaborative network involving a multi-disciplinary, multi-institutional team of researchers in different areas of Brazil and, therefore, solidifying the connection between the European Community and Brazil, in particular between Cardiff University and Embrapa.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N006852/1
    Funder Contribution: 32,090 GBP

    We propose an international network to explore this key knowledge gap in understanding the effects of pests and pathogens in accelerating tropical rainforest tree mortality during drought. The project will deliver an integrated and focused anlaysis, using expertise in plant physiology, forest ecology and microbial and insect ecology. It will also make use of the unique leverage of the world's only long-term drought experiment network in tropical forests. We will use field-based workshops at two current tropical forest drought experiments, in Australia and Brazil, to bring together experts in plant function, the effects of pest and pathogen ('biotic') attack on woody tissue, and vegetation modelling. New ground-based and remotely-sensed measurements will be examined to test for relationships between measures of biotic attack and metrics of plant function during experimental drought. We will compare responses in different tree size classes, tree species groups, and at the level of the forest ecosystem (large experimental plot treatment). The outcome will be new insights into the causes of tropical rainforest tree death from drought, in relation to plant physiology and insect or microbial attack. This insight will be delivered in the form of new data, new scientfic articles and information that can be used by vegetation modellers to predict the effects of drought on tropical forests in the future. The group of experts built using these funds will form a pre-eminent multi-disciplinary consortium in the subject area, capable of advancing the subject into the future for the benefit of the science, interested environmental policy makers and university educators.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K016431/1
    Funder Contribution: 1,167,090 GBP

    Tropical forests hold more species of plant and animal than any other kind of terrestrial environment, and store large amounts of greenhouse gases in their trees and soils. Yet most of us are aware that they are also highly threatened by human activities, with media attention often focussing on deforestation - when forests are replaced with alternative land-uses, such as agriculture and cattle ranching. However, forests are also being modified in other ways, when trees are felled for the commercial extraction of timber, or when forest burn in abnormally dry years. These events are known as forest degradation, and affect a larger area of land than deforestation alone. The widespread nature of forest degradation means it is very important to understand whether these human-modified forests are performing similar roles as intact primary forests. How much carbon and nitrogen do they hold, and are these nutrients cycled between the leaves and the forest floor at similar rates as in primary forests? Can these ecosystem processes by predicted by characteristics of the vegetation itself (such as leaf shape and format, and the rate it carries out photosynthesis). And crucially, what are the implications of these changes for the future of these forests - are they able to resist additional modification? This project will answer these questions in two separate Brazilian biomes, the Atlantic Forests of Sao Paulo and the Amazon forests near the city of Santarem. The data we collect in two years of fieldwork will be used to improve our understanding of forest functioning, and can help develop computer simulations of forests. These simulations can then be used to examine how forests may respond to changes in climate, or other human impacts such as logging or fire. These forests are also crucial for biodiversity conservation, as many rare and endemic species are only found in landscapes where forests have already been heavily modified by humans. It is important to assess to what extent they help conserve these species, and what factors could be managed to improve their conservation value. Tropical forests hold a bewildering number of species, and so many of these species are yet to be described. It is therefore important to focus on groups of species which are well known, making birds and plants are two ideal species groups. The detailed work on forest functioning will take place in a limited number of forest plots, as we are limited by the many precise measures that need to be taken over time. In contrast, biodiversity is much quicker to sample, allowing us to examine much larger areas of around one million hectares in the Amazon and in the Atlantic Forest. As well as examining biodiversity in these landscapes, this project will also assess changes in species traits, which are characteristics that link species to the many tasks they perform in nature. By doing so, we will be able to examine the extent to which human-modified forests are losing key ecosystem processes, such as pollination from long-beaked hummingbirds, or the ability of trees to assimilate and store large quantities of carbon. This will provide us with a much better idea of how the many different kinds of human activity are affecting biodiversity, which is important if we are to design landscapes that help protect the many species of conservation concern. For too long, important scientific knowledge has remained locked away in learned journals, and has failed to inform and influence policies. We are determined not to let this happen with our research, as we believe it will produce important insights that can help us preserve the ecological stability of tropical forests and the biodiversity they contain. To facilitate these impacts, we will make every effort to disseminate our findings. These activities include producing a series of short films for YouTube, linking with local schools, and writing policy briefs.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.