
ICV
6 Projects, page 1 of 2
Open Access Mandate for Publications assignment_turned_in Project2023 - 2026Partners:ICV, UA, ICV, CSICICV,UA,ICV,CSICFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: 2022.09319.PTDCFunder Contribution: 249,994 EURThe European Green Deal has set ambitious goals for climate neutrality by 2050, through decarbonisation of all economic sectors, with an increased share of distributed, renewable energy technologies and their integration with a diverse range of green energy carriers [1]. This requirement is essential as many sectors are difficult to decarbonise by electrification with current technologies. Examples are long distance haulage, aviation and shipping, which need energy carriers of very high density. To make these sectors carbon-neutral requires the development of other alternatives, such as the production of synthetic, high energy density liquid fuels derived from renewable sources [2]. This goal will be achieved by the construction and simulation of an electrochemical device to convert biogas into carbon neutral, synthetic liquid fuels, with the positive integration of CO2 and renewable electricity, Fig.1. The biogas feedstock is a sustainable product formed by the biological breakdown of biodegradable waste such as manure or sewage, municipal waste or green waste. Biogas is comprised primarily of methane and carbon dioxide, with 50-75% CH4, large fractions of CO2 and trace impurities of H2S, N2, O2 and H2O. Therefore, the main constituents of biogas (CH4 and CO2) are greenhouse gases and are potential contributors to the effects of global warming, if not suitably utilised. The large CO2 fraction of biogas also lowers its calorific value, preventing direct upload to the natural gas distribution network and decreasing the efficiency of electricity generation by traditional methods [3,4]. Overcoming these deficits, has traditionally been shown to be uneconomic without government subsidies [3,4]. Hence, rather than regarding one of the principal biogas components as a hindrance, the high CO2 fraction of biogas will be utilised in the current work to reform the CH4 fraction. A high temperature proton conducting ceramic-oxide membrane will promote and instantly separate the CO and H2 products of CO2 reforming of CH4 by electrochemical pumping. These separated products are then introduced into a downstream Fischer Tropsch reactor, where their distributed feeding can steer product formation to liquid fuels of high calorific value, Fig.1. The global process, therefore, converts two potential greenhouse gases (CH4 and CO2) to C-neutral, sustainable liquid fuels, without the CO2 fraction of the original biogas composition being considered as waste. The following key challenges will be addressed to attain this goal. SPECIFIC OBJECTIVES i) To fabricate the electrochemical cell of Fig.1, and to modify these devices to the current application by materials tailoring to survive in the biogas atmosphere. ii) To assess the performance of the electrochemical device, where ideal target values are complete conversion of CH4, with full separation of the H2 from the biogas mixture, and where the product ratio of CO and H2 approaches unity. iii) To analyse the technological requirements for integration of the electrochemical device in downstream liquid fuel synthesis, based on two different integrated systems, Fig.1. This goal will dimensionalise and reveal the most energy and cost effective methods for downstream integration, profiting from thermal integration. iv) To assess the ability to pressurise the CO and H2 intermediate products by the combined use of electrochemical pressurisation and gas ejection, Fig.1b. Here numerical simulation of the ejector step will be performed as a function of the operating parameters and the ejector dimensions. v) To develop a life cycle thinking platform for sustainable liquid fuel production including: a) the current pathway from biogas and renewable electricity; b) the raw materials, energy and processes used; c) the best solutions to obtain liquid fuels, under a circular economy perspective. vi) To provide proof of concept and validate the concept at the laboratory scale, increasing its TRL from TRL2 to the status of TRL4 by the end of the project, securing the quantitative technological validation that is required for funding progression. This highly multidisciplinary goal is ensured by a carefully selected team composed of the PI, A.Sousa, an expert in fluid dynamics and heat transfer, D.Fagg, an expert in materials development and electrochemistry and M.Coelho, an expert in life cycle assessment of alternative fuels. International collaboration is organized with CISC, Madrid, Spain, in protonic membranes, while industrial contact is with the Portuguese chemical company Bondalti Chemicals. One of the principal aims of the current project is training and two PhD and one Investigator grant are requested. Two MSc degrees will also be offered focused on the project goals. A further initiative is the involvement of a young researcher, G. Constantinescu, in the project team who will contribute both scientifically and in partial supervision of the new students, offering valuable supervision training. O European Green Deal estabeleceu metas ambiciosas para a neutralidade climática até 2050, pela descarbonização de todos os sectores económicos. Este objetivo exige uma maior fração de energias renováveis e a sua integração com um diverso leque de transportadores de energia verde[1]. Esta última exigência é essencial uma vez que muitos sectores são difíceis de descarbonizar através da eletrificação com as tecnologias atuais. Exemplos são o transporte de longa distância, aviação e transporte marítimo, que necessitam de transportadores energéticos de alta densidade. Para tornar estes sectores neutros em carbono, é necessário o desenvolvimento de alternativas, como a produção de combustíveis líquidos sintéticos de elevada densidade energética provenientes de fontes renováveis[2]. Este objetivo será alcançado através da construção e simulação de um dispositivo eletroquímico para converter biogás em combustíveis líquidos sintéticos, neutros em carbono, com a integração positiva de CO2 e eletricidade renovável, Fig.1. A matéria-prima do biogás é um produto sustentável formado pela degradação biológica de resíduos biodegradáveis, tais como estrume ou esgoto, resíduos urbanos ou resíduos verdes. O biogás é composto principalmente por metano e dióxido de carbono, com 50-75% CH4, grandes frações de CO2 e impurezas vestigiais de H2S, N2, O2 e H2O. Assim, os principais constituintes do biogás (CH4 e CO2) são gases de efeito de estufa, contribuindo para o aquecimento global se não forem devidamente utilizados. A grande fração de CO2 no biogás também reduz o seu valor calórico, evitando a injeção direta na rede de distribuição de gás natural e diminuindo a eficiência da produção de eletricidade pelos métodos tradicionais [3,4]. Superando estes défices, tem-se revelado tradicionalmente pouco económico sem subsídios governamentais [3,4]. A elevada fração de CO2 de biogás será utilizada no presente trabalho para a reforma do CH4. Será utilizada uma membrana cerâmica condutora protónica de alta temperatura para promover e separar instantaneamente CO e H2 da reforma do CO2 do CH4 por bombagem eletroquímica. Estes produtos serão introduzidos num reator Fischer Tropsch a jusante, sendo possível a sua conversão para combustíveis líquidos de elevado valor calórico, Fig.1. O processo global converte, portanto, dois potenciais gases com efeito de estufa em combustíveis líquidos neutros e sustentáveis, sem qualquer libertação residual de CO2 da composição original como resíduo. Os seguintes desafios-chave serão abordados para atingir este objetivo. OBJETIVOS ESPECÍFICOS i) Fabricar a célula eletroquímica da Fig.1 e modificar estes dispositivos para a aplicação atual por materiais adaptados para sobreviver na atmosfera de biogás. ii) Avaliar o desempenho do dispositivo eletroquímico, onde os valores-alvo ideais são a conversão completa de CH4, com separação total do H2 da mistura de biogás, e onde a razão dos produtos CO e H2 se aproxima da unidade. iii) Analisar os requisitos tecnológicos para a integração do dispositivo eletroquímico na síntese de combustível líquido a jusante, com base em dois sistemas integrados diferentes, Fig.1. Este objetivo irá dimensionar e revelar os métodos mais energéticos e rentáveis para a integração a jusante, beneficiando da integração térmica. iv) Avaliar a capacidade de pressurizar os produtos intermédios CO e H2 através da utilização combinada de pressurização eletroquímica e ejeção de gás, Fig.1b. Será utilizada simulação numérica do passo ejetor em função dos parâmetros operacionais e das dimensões do ejetor. v) Desenvolver uma plataforma de de ciclo de vida para a produção sustentável de combustíveis líquidos, incluindo: a) a atual via do biogás e da eletricidade renovável; b) as matérias-primas, a energia e os processos utilizados; c) as melhores soluções para a obtenção de combustíveis líquidos, numa perspetiva de economia circular. vi) Apresentar uma prova de conceito e validar o conceito à escala laboratorial, aumentando o seu TRL do seu estado atual do TRL2 para o estatuto de TRL4 até ao final do projeto. Estes objetivos altamente multidisciplinares são assegurados por uma equipa cuidadosamente selecionada: o PI, A.Sousa, especialista em dinâmica de fluidos e transferência de calor, D.Fagg, especialista em desenvolvimento de materiais e eletroquímica e M.Coelho, especialista em avaliação do ciclo de vida de combustíveis alternativos. A colaboração internacional é organizada com o CISC, Madrid, Espanha, em membranas prototónicas, enquanto o contacto industrial é com a empresa química portuguesa Bondalti Chemicals. Um dos principais objetivos do projeto atual é a formação e são solicitados dois doutoramentos e uma bolsa de investigação. Serão também oferecidos dois mestrados focados nos objetivos do projeto. Outra iniciativa é o envolvimento de um jovem investigador na equipa, G. Constantinescu, que contribuirá cientificamente e na coorientação dos novos alunos, adquirindo valiosa formação de orientação
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::6ab64fd837bdb8dce86ba052026530fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::6ab64fd837bdb8dce86ba052026530fb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2023 - 2026Partners:ICV, CSIC, UFPB, ICV, UFPB +1 partnersICV,CSIC,UFPB,ICV,UFPB,UAFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: 2022.02498.PTDCFunder Contribution: 250,000 EURA principal aim of the EU 2030 climate & energy framework is the reduction of CO2 emissions by the development of new technologies for industries and processes [1]. There is an urgent need for transitioning to a green economy where the fabrication of sustainable chemicals is deeply urged [2]. In this regard, ammonia (NH3) is a key chemical that is produced in vast quantities worldwide as a precursor in a range of products that are vital to society , such as fertilizers and medicines. Nonetheless, its current industrial production (Haber-Bosch method) requires high temperatures and pressures, and produces large quantities of CO2 due to its continued reliance on H2 from natural gas[3]. New green concepts for NH3 production are, therefore, urgently needed . The current proposal offers a highly attractive alternative to mitigate this problem, based on the electrochemical synthesis of NH3 directly from biomethane (CH4) and N2 , using a Proton Ceramic Electrochemical Cell (PCEC) , with the input of renewable electricity . One of the ground-breaking features of this project, apart from having zero direct CO2 emissions , is the co-production of ethylene (C2H4) , an important raw material for producing a wide variety of chemicals (Fig. 1). Biomethane comes from upgrading biogas (mixture of CH4, CO2 and few other gases produced by anaerobic digestion of organic matter in an oxygen-free environment), so the feedstocks are the same as those used to produce biogas, i.e., organic waste (Fig. 1) [4]. Thus, the PCEC provides a method of chemical storage of renewable electricity, allowing to balance renewable energy supply and demand in transportable chemical products of high energy density . However, previous work on this concept is scarce . The works that do exist have shown low Faradaic efficiencies and low ammonia formation rates [3], due to the lack of properly designed electrocatalysts for the nitrogen reduction reaction , with insufficient selectivity offered for the desired NH3 product. Moreover, the study of suitable electrocatalysts CH4 dissociation in PCECs is also in its infancy. In particular, suitable catalysts capable of avoiding carbon formation are urgently required. Hence, electrocatalyst design is highlighted to be a critical step to develop this PCEC concept to a more mature stage. Moreover, these components must also offer high electrochemical performance due to the electrochemical nature of this process. This project offers a very exciting and novel combination of electrodes for: i) NH3 formation, using molten hydroxides catholytes due to their ability to diffuse ionic species[5,6] and Fe2O3 electrodes due to their high selectivity for NH3 formation and electrical conductivity [5,7] and ii) for biomethane conversion to ethylene, including the new TMCs , due to their high electron conductivity and stability against carbonation [8–10]. As electrolyte materials, a ground-breaking feature of the current project is the use of hexagonal perovskites , which have only very recently been proposed as protonic conductors, which exhibit a very high protonic transport number [11] at temperatures where the state-of-the-art compositions exhibit mixed conductivity that will compromise protonic transport (= 400°C)[12,13]. The project, therefore, aims to tailor the electrocatalytic performance of these materials for this application for the first time . The final goal is to form a demonstration prototype based on a PCEC, using biomethane and nitrogen as reactants that can operate at ambient pressure . To achieve this goal, the project is organized in six tasks dedicated to: i) thermodynamic calculations ii) synthesis and crystallographic phase formation , iii) electrode materials stability and thermal behavior , iv) fabrication and characterization of symmetrical and 3-probe cells , v) fabrication of complete Membrane Electrode Assembly (MEA) , and vi) MEA electrocatalytic characterization in real operation conditions . By such PCEC design, the current project aims to achieve NH3 production rates (>1e-9mol.s-1.cm-2) and Faradaic efficiencies (>10%) and CH4 conversions (> 50%) at T1e-9mol.s-1.cm-2) e as eficiências faradaicas (>10%) e CH4 (> 50%) em T<600 °C superiores às atualmente alcançadas na literatura[14]. O trabalho será realizado pela equipa local, especialistas em cerâmicos protónicos, com a colaboração de duas instituições estrangeiras (Instituto de Cerámica e Vídrio (Espanha), especialistas em cristalografia, e Universidade do Rio Grande do Norte (Brasil), especialistas em preparação de materiais, e uma das principais empresas químicas nacionais (Bondalti), especialistas em síntese eletroquímica, fornecendo as competências necessárias para a realização dos objetivos estabelecidos. Este projeto oferece uma rota emocionante e completamente disruptiva para sintetizar dois dos mais importantes produtos químicos extensivamente utilizados em todo o mundo . Os novos materiais aqui propostos oferecem um enorme potencial para atingir este objetivo, enquanto se espera um impacto alargado na área da catálise heterogénea e da eletroquímica de estado sólido de condutores protónicos.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::2bdba81167746460811770f51e72ce73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::2bdba81167746460811770f51e72ce73&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- TEMA,TEMA,ICV,CSIC,EaSTCHEM,ICV,CICECO/UA,UAFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: PTDC/CTM/105424/2008Funder Contribution: 170,000 EURAll Research products
arrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::dc2a2926dbf656dfd27476ac66ae1fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::dc2a2926dbf656dfd27476ac66ae1fde&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu Open Access Mandate for Publications assignment_turned_in Project2021 - 2024Partners:CSIC, TEMA, ICV, UFPB, ICV +3 partnersCSIC,TEMA,ICV,UFPB,ICV,TEMA,UFPB,UAFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: PTDC/CTM-CTM/2156/2020Funder Contribution: 250,000 EURAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::10fb4fd663ab9ab3fddddee269867fe1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::10fb4fd663ab9ab3fddddee269867fe1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- ICV,TEMA,CSIC,TEMA,ICV,CICECO/UA,UN,UA,UNFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: PTDC/CTM/100412/2008Funder Contribution: 190,000 EURAll Research products
arrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::fa613f3f12d9125538c7c0588be01fbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::fa613f3f12d9125538c7c0588be01fbd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right