Powered by OpenAIRE graph
Found an issue? Give us feedback

CEA - Atomic Energy Commission

Country: France

CEA - Atomic Energy Commission

23 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/J002348/1
    Funder Contribution: 712,165 GBP

    In atoms, molecules or biological systems, all structural changes will modify the properties of the entity (form, colour, capacity to react with other entities etc ...). These changes are due to electronic and nuclear dynamics known as charge migrations (rearrangement of electrons and/or protons within the entity). However charge migrations are very fast and can occurs within 1/1000 000 000 000 000 second meaning from few attosecond (1e-18 sec) to few femtosecond (1e-15 sec). As an example in the Rutherford model of the hydrogen atom, known as the "planetary" model, an electron is moving around a proton (first orbital). The duration the electron takes to complete period around the proton is 150 asec. What is particularly exciting is to be able to make "a movie" of this ultra-fast dynamic that no existing device is capable to follow. My interests are actually not only to observe the first instants of these structural changes but also to control them to go deeper in the understanding of how chemical reactions or biological phenomena take place. If such attosecond information is achieved it will be possible to approach very high-speed information transfer and why not studying how information can be artificially encoded (molecular electronics) or present (traces of cancers) in biological sample, a kind of bio computing?This research will give birth to a new type of Physics that will bridge the gap between many sciences. The technical challenges under this research area are leading international efforts in laser development that will have a huge impact on technological applications also in industry (electronic, communication), medicine technologies (Magnetic Resonance Imaging, proton therapy, pharmacology).Therefore I developed a research based on tools to observe and control the intra- atomic and intra-molecular electrons and nuclei motions. To capture this dynamics at the origin of any chemical or biological reactions, one has to capture snapshots of the system evolving, exactly as a camera will do. Unfortunately there is no such detector, but what is possible is to find a process observable, that can be affected by these changes and so that will carry the fingerprint of these changes. The ideal candidate for this is light, because emission of photons is highly sensitive to any changes, it is a fast process and it can be observable by looking at spectra (frequency equivalent to its colour). The process I choose is high-order harmonic generation (HHG) that occurs within 10's attosec to few fsec (appropriate time window). It occurs while an intense and short laser pulse interacts with an atom or a molecule. During this interaction, an electron is ionised (extract from the core), and follow a certain trajectory before coming back to the core where it can be recaptured, exactly as a returning boomerang. The excess kinetic energy the electron has acquired during its travel will be spent by the system (final atom or molecule) emitting a new photon which frequency (colour) will be an odd harmonic of the fundamental photon (the laser photon). These harmonic photons can be measured accurately so if a change in the core occurs during the electron travel, the characteristic of the photons emitted will be modified. I have been working in the study of high order harmonic and in particular in the understanding of electron trajectories during the process. I demonstrated experimentally that the ionised electron can not only follow one trajectory but many, giving rise to my technique of investigation called Quantum-Path Interferences first demonstrated in atoms. I will use this technique under different conditions to extract the information on charge migration in molecules within the attosecond timescale.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T012811/1
    Funder Contribution: 1,055,770 GBP

    Nuclear fission offers a reliable low carbon source of energy, but, the nuclear waste generated as a result of nuclear reactor operation needs proper treatment and confinement in a durable material to ensure that the biosphere is not contaminated with radioactive elements in the near and long-term future. Geological disposal (GD) - which involves confining the host material inside a safety barrier (usually a metal canister) and then permanent deposition of such wastepackages in a pre-selected geological site - is now an internationally accepted methodology including the UK. Nonetheless, after thousands of years, the outer safety barrier will get corroded and the host material will be exposed to the surrounding geological conditions. When in contact with water/moisture, the radioelements may be released from the host matrix into the surrounding geology from where they can be transported into the biosphere. Understanding long-term changes in the wastepackages -starting from the day of their fabrication - is a key element in addressing the eventual release of the radioisotopes. Besides corrosion, one of the reasons why the wastepackages will change under geological disposal conditions is the fact that radioactive decay of the confined radioisotopes will damage the host matrix at atomic level called as self-irradiation damage. This damage accumulation over hundreds of thousands to millions of years can potentially alter the chemical and mechanical durability of the wastepackages. These irradiation induced modifications can have a significant effect on the eventual release of the radioisotopes. Thus, addressing radiation stability of the wastepackages is an essential part of demonstrating long-term safety of the geological disposal. This research proposal will utilize MIAMI irradiation facility at the University of Huddersfield to study the effects of self-irradiation damage and He accumulation in various types of waste packages ranging from glasses to glass-ceramic composites. Using a transmission electron microscope with in-situ dual-ion-beam irradiation, the irradiation induced modifications will be monitored in real time. The dual-ion-beam irradiation represents the closest analogue to self-irradiation damage in nuclear wasteforms yielding reliable and realistic results. These ion irradiation effects will be compared with actinide doping studies to be undertaken in collaboration with nuclear industry partners, thereby, allowing establishing the irradiation conditions necessary to simulate the self-irradiation damage. The research will be undertaken on leached (gels) and non-leached materials to understand the irradiation induced evolution of the wastepackages and address the effect of radiation damage on the leaching and vice versa. By collaborating with external partners such as ANSTO Australia, CEA Marcoule France, University of Cambridge and, National Nuclear Lab UK, this proposal will bring together the experience and expertise of internationally recognised researchers to develop a better understanding of the wasteform evolution due to self-irradiation damage under geological disposal conditions including leaching.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R043973/1
    Funder Contribution: 1,247,260 GBP

    The science and engineering of materials have been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems. The next-generation nuclear reactors (Gen IV) operating at temperatures of 550C and above have been previously studied to some extent and in many cases experimental or prototype nuclear systems have been operated. For example, the UK was the world-leading nation to operate the Dounreay experimental sodium-cooled fast nuclear reactor (SFR) for ~19 years and a prototype fast reactor for ~20 years. However, even for those SFRs with in total of 400 reactor-years international operating experience, their commercial deployment is still held up. A formidable challenge for the design, licensing and construction of next-generation Gen IV SFRs or the other high-temperature nuclear reactors is the requirement to have a design life of 60 years or more. The key degradation mechanisms for the high-temperature nuclear reactors is the creep-fatigue of steel components. When structural materials are used at high temperature, thermal ageing and inelastic deformation lead to changes in their microstructures. The creep and creep-fatigue performance of structural materials are limited by the degradation of microstructures. The underlying need is to develop improved understanding and predictive models of the evolution of the key microstructural features which control long-term creep performance and creep-fatigue interaction. This Fellowship will use an integrated experimental and modelling approach covering different length and time scales to understand and predict the long-term microstructural degradation and creep-fatigue deformation and damage process. I will then use the new scientific information to make significant technological breakthroughs in predicting long-term creep-fatigue life that include microstructural degradation process. I will thereby realise a radical step beyond the current phenomenological or a functional form of constitutive models which received very limited success when extrapolated to long-term operational conditions. This research will put me and the UK at the forefront of nuclear fission research. This Fellowship will enable the 60 years creep-fatigue life of the next-generation high-temperature nuclear systems by developing a materials science underpinned and engineering based design methodology and implement it into future versions of high-temperature nuclear reactor design codes. In consequence, Gen IV reactor technologies will become commercially viable and Gen IV SFRs will be built globally to provide an excellent solution for recycling today's nuclear waste. This fellowship aims to influence the international organisations responsible for the next-generation nuclear design codes and gaining an early foothold in the international nuclear R&D via this research will give the best chance to secure Intellectual Property and return long term economic gains to our UK.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/D001048/1
    Funder Contribution: 909,512 GBP

    The laws of quantum mechanics are the most fundamental laws of physics that we know of. They have been stringently tested in a variety of situations. Even so, there are still basic unanswered questions concerning our understanding and interpretation of some of the results. Despite this, it is very important to make practical use of what we already know about quantum mechanics. In this sense, quantum physics is both a fundamental science and new engineering. It seems a certainty that in the forthcoming century we will progress in our understanding and technical mastery of quantum effects as quickly as we have done with electricity in the last. Our research proposal is based on one of the most exciting recent results. In 1999 Japanese researchers, building on other work, showed that it is possible to make an electrical circuit that obeys the laws of quantum physics. Normally objects that obey quantum mechanics are 'natural' single particles such as electrons and photons, never before have we had the opportunity to study or exploit an artificial quantum circuit. Presently such circuits are made from Aluminium, they operate at very low temperatures, below 100mK where the Aluminium is superconducting and at very high frequencies, typically 10 GHz. It is now possible to observe the discrete (quantised) changes in energy, to manipulate the circuit at will into its different quantum states, and to perform all the basic atomic physics experiments on these man made electrical circuits. Five research groups in the world have so far been able to reproduce and improve on the early results using different designs of circuits and with varying degrees of success. However, it is now clear that none of these five experiments operate perfectly. It has proven difficult to measure reliably the quantum state of the circuit for reasons that are not yet fully understood, this is known as the readout problem. In addition the circuits are not completely stable in the sense that microscopic changes in the environment around them interfere with their operation, an effect known as environmental decoherence. Our research is dedicated to solving these problems. We plan to take the best available readout technology, a quantised photon cavity resonator developed at Yale University in the USA and use it on the best available quantum circuit, the quantronium circuit developed at the CEA-Saclay, France. The fastest way to establish a serious independent research effort in the UK is to collaborate with one of the best current research groups. With this in mind, the proposer of this research has spent the past year working with the CEA-Saclay group. Now we will initiate a new research effort at Royal Holloway, University of London, already well known for its contributions to quantum computing. The collaboration with the CEA-Saclay will continue and there will be distinct but complementary research programmes.The research programme is dedicated to understanding and eliminating the problems referred to above and to building better circuits. Quantum circuits offer a very promising route to building a quantum computer and superconducting qubits are presently the best available solid state qubits. We wish to produce a device that couples two qubits together, this is the necessary next step in the production of a quantum computer. Such a device would also allow us to make systematic studies of quantum entanglement, perhaps the least well understood area of quantum mechanics. We also plan to explore how it is that quantum mechanics makes the transition to classical mechanics. It is thought that this proceeds through the process of environmental decoherence, which is precisely the effect to which a quantum circuit is most vulnerable, hence presenting a unique opportunity to study this problem in a very direct way.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M011135/1
    Funder Contribution: 889,838 GBP

    Nuclear power is arguably the only option for large-scale baseload electricity generation that is compatible with the UK Government's commitment to an 80% reduction in greenhouse gas emissions by 2050. The safe operation of current and future generations of nuclear reactors requires the development and refinement of materials to be used in the construction of reactors and in materials (glass and glass-ceramic wasteforms) to be used for the long-term safe disposal of radioactive wastes. The inevitable irradiation of such materials with energetic particles such as neutrons and alpha particles can have extremely deleterious effects on their structural strength and even their physical dimensions. Ballistic effects cause atoms to be knocked off their normal positions creating vacant sites (vacancies) and displaced atoms (interstitials). Nuclear reactions induced by neutron irradiation can create alpha particles (which are just helium nuclei) causing a build-up of helium gas in these materials. Helium has very little solubility in most materials and will generally combine with vacancies (or accumulate in other regions of lower than average electron-density) to form bubbles. These can have very significant unwanted effects on the properties of the materials by, for instance, building up at the boundaries between grains in polycrystalline materials and making them much more brittle and likely to fracture. Bubbles will also result in highly undesirable changes to the physical dimensions of components. The high temperatures at which reactors operate, and to which wasteforms will be subjected for the first 500 years-or-so of storage, can greatly exacerbate these problems, particularly in the reactor materials by enabling the vacancies, interstitials and helium atoms to combine in different ways and form extended defects such as voids, dislocations and stacking faults. This project aims to explore systematically the effects that varying the amount of displacement damage, the helium concentration and the temperature has on the damage that develops in a range of structural materials and wasteforms. Different combinations of these parameters pertain to different types of material (both structural and wasteforms), different reactors and even different locations within a reactor. In addition, aspects of the waste glasses, such as alkali content and the presence of glass ceramic interfaces will also be varied in order to determine their role in the development of bubbles and other defects. The project exploits the unique attributes of the MIAMI facility (constructed with EPSRC funding) that permit the ion irradiation of thin foils of materials in-situ within a transmission electron microscope. By varying the ion energy, the ratio of injected helium to the amount of displacement damage can be varied over the range of values relevant to reactor and wasteform materials without the necessity of using two separate ion beams. The ability to irradiate at a range of temperatures from -150 to +1000 degrees Celsius means the that the entire relevant parameter space (helium content, damage and temperature) can be explored. In this way, transmission electron microscopy (and also electron energy-loss spectroscopy for the nuclear glasses) will be used to build up a comprehensive dataset of the form and structure of defects (defect morphologies) resulting from the various combinations of these parameters. The main aim is then to develop a phenomenological picture of the processes occurring. For the structural materials, the dataset will be calibrated and validated by comparisons with neutron-irradiated materials which will give the dataset greater power to predict defect morphologies likely to result under reactor conditions. Finally, through collaboration with computer modellers, we will seek to obtain a fundamental understanding of the underlying physical processes which drive the behaviour of these materials under irradiation.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.