
Chiba University
Chiba University
3 Projects, page 1 of 1
assignment_turned_in Project2012 - 2015Partners:University of Bristol, Chiba University, Universität Innsbruck, Chiba University, University of Bristol +2 partnersUniversity of Bristol,Chiba University,Universität Innsbruck,Chiba University,University of Bristol,Aberystwyth University,University of InnsbruckFunder: UK Research and Innovation Project Code: NE/K000942/1Funder Contribution: 62,864 GBPGlaciers and ice-sheets are increasingly recognized as the homes of surprisingly diverse and active microbial ecosystems. Even the mere prospect of life in Antarctic subglacial lakes, isolated for many millennia, attracts major international attention and investment. However since life certainly flourishes in unusual habitats on glacier surfaces. these should not be overlooked in our attempts to explore microbial biodiversity. Cryoconite holes are one such habitat, formed when rocky dusts are colonized by a diverse and highly active microbial consortium, forming a darkened microbe-mineral aggregate which increases the transfer of the sun's energy to ice and thus accelerates surface melt. My doctoral studies centred on the diversity and functioning of the bacterial community of cryoconite, which is dominated by organisms closely related to taxa in a broad range of habitats world-wide. In stark contrast, of the eukaryotes inhabiting cryoconite on High Arctic glaciers, the most abundant group by biomass, Fungi, appears strongly dominated by two related groups of fungi hitherto unknown to science. These fungi account for 75% of the sequences in collections of fungal DNA extracted from Svalbard cryoconite, and according to microscopy using genetic stains specific to the group, are derived from small ovoid cells attached to debris. Sequenced genes from specific DNA tests for the fungi demonstrate their presence in cryoconite worldwide suggesting a broad geographic range while the absence of affiliated sequences from DNA databases and the failure to detect the group in periglacial habitats imply their restriction to the cryoconite group near the root of the fungal tree of life and provide a crudely estimated divergence during the Neoproterozoic era, which consisted of major world-wide glaciations, including a hypothesized "Snowball Earth". Little else is known about these fungi, tentatively named the "cryomycetes". Therefore, I seek support to detail their evolutionary history, population structure, ecological functions and interactions. Doing so will permit the testing of the hypotheses that i)"cryomycetes" assume a significant role in the functioning of the extant cryoconite ecosystem ii)they form a major new branch on the fungal tree of life iii)cryoconite holes have formed a stable refuge for these fungi over glacial cycles. As a consequence, I anticipate insights into the interactions between cryoconite biodiversity and melting glaciers, both in the present day, and potentially in the postulated transition from a Neoproterozoic "Snowball" to a "Mudball" Earth.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::31d7ca5aeb1058a0dbcdb27ea6cae708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::31d7ca5aeb1058a0dbcdb27ea6cae708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2025Partners:University of Minnesota, University of Bristol, WESTERN WASHINGTON UNIVERSITY, Universität Innsbruck, Atomic Energy and Alternative Energies Commission +11 partnersUniversity of Minnesota,University of Bristol,WESTERN WASHINGTON UNIVERSITY,Universität Innsbruck,Atomic Energy and Alternative Energies Commission,WESTERN WASHINGTON UNIVERSITY,University of Salzburg,Northern Arizona University,Chiba University,Charles University,UiT,Météo-France,CNR,AU,Aarhus University,Charles UniversityFunder: UK Research and Innovation Project Code: NE/Y002636/1Funder Contribution: 82,343 GBPChlorophyte "snow algae" and Streptophyte "glacier algae" are found across the cryosphere, forming widespread algal blooms in snowpacks and on glacier ice surfaces during spring/summer melt seasons. These blooms hold significant potential to exacerbate the already rapid loss of snowpack and glacial ice resources driven by climate change because they establish albedo feedbacks that amplify melt. Their presence also leads to the construction of active microbial food-webs that provide important ecosystem functions, e.g. carbon sequestration, nutrient cycling and export of resources to down-steam systems. The algae themselves are also important analogs for what life was like on Earth during past mass glaciations, and for how life may exist on other frozen planets across our solar system. Driven by these series of novelties, the snow and glacier algal research community has significantly expanded over recent years, with active projects now spanning Arctic, Alpine and Antarctic regions of the cryosphere. To-date, however, research projects have tended to work in isolation, employing different methods for the analysis of blooms. This has prevented comparisons of findings between regions of the cryosphere and an overall appreciation for the global role and impacts of blooms at present. In turn, we cannot yet project the fate of snow and glacier algal blooms into the future under climate change, or back to the past during key periods of Earth's history. Yet the critical mass achieved in the snow and glacier algal research community also presents an opportunity to pool knowledge and resources, and align methods to drive the field to new achievements. The CASP-ICE project brings together leaders in the field of snow and glacier algal research (x2 UK investigators and x12 international partners) to undertake the foundational work needed to align efforts across the research community and unlock the next generation of science on snow and glacier algal blooms cryosphere-wide. Specifically, we will tackle the following four major tasks: 1. Define consistent methods for sampling and mapping snow and glacier algal blooms within field sites, so that datasets produced into the future will be completely comparable across different regions and times of sampling. 2. Apply these methods in study sites that the CASP-ICE team are currently working to produce the first set of standardized samples and maps of blooms for the community to work with. 3. Undertake the nuts-and-bolts validation of both laboratory-based methods for analyzing field samples as well as computational methods for integrating field measurements and mapping datasets with larger-scale satellite imagery that is needed to monitor blooms at global scales. 4. Establish a list of field sites that can form the backbone of an ongoing cryospheric algal bloom monitoring network and secure the funding to continue monitoring into the future. CASP-ICE will achieve these tasks through a series of networking and knowledge exchange activities as well as hands-on science. An initial workshop in spring 2024 will provide the platform to define best practice methods for the community and start talks on future network structure and direction. All partners will then undertake sampling and sample/data analysis across their respective study regions to produce the first fully validated datasets on snow and glacier algal blooms across the cryosphere. The protocols defined and datasets produced will be leveraged in subsequent funding bids that will be prepared during a series of networking visits and partner meetings led by the project PI, providing the support needed for ongoing monitoring of blooms into the future as climate change proceeds. CASP-ICE will provide the network and scientific foundation needed to tackle the large-scale questions about the role of cryospheric algal blooms in the Earth System at present, into the future under climate change, and back into the past.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::427ca661d4c86007433d9e4746df78ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::427ca661d4c86007433d9e4746df78ea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2021Partners:CNRS, University of Leuven (Kulak Campus), Woods Hole Oceanographic Inst, CIT, Chiba University +31 partnersCNRS,University of Leuven (Kulak Campus),Woods Hole Oceanographic Inst,CIT,Chiba University,University of Alberta,BYG.DTU,BYG.DTU,CNRS,Technical University of Denmark,Chiba University,GFZ Potsdam - Geosciences,Danish Geological Survey - GEUS,GFZ Potsdam - Geosciences,Geological Survey of Denmark and Greenland,Utrecht University,University of Copenhagen,University of Bristol,Helmholtz Association of German Research Centres,California Institute of Technology,GFZ,BYG.DTU,University of Alberta,Louisiana State University,KU Leuven,Utrecht University,KU Leuven Kulak,University of Bristol,LSU,ULiège,Woods Hole Oceanographic Institution,California Institute of Technology,University of Copenhagen,Danish Geological Survey - GEUS,University of Liège,Woods Hole Oceanographic InstFunder: UK Research and Innovation Project Code: NE/M021025/1Funder Contribution: 1,473,360 GBPConcerns are growing about how much melting occurs on the surface of the Greenland Ice Sheet (GrIS), and how much this melting will contribute to sea level rise (1). It seems that the amount of melting is accelerating and that the impact on sea level rise is over 1 mm each year (2). This information is of concern to governmental policy makers around the world because of the risk to viability of populated coastal and low-lying areas. There is currently a great scientific need to predict the amount of melting that will occur on the surface of the GrIS over the coming decades (3), since the uncertainties are high. The current models which are used to predict the amount of melting in a warmer climate rely heavily on determining the albedo, the ratio of how reflective the snow cover and the ice surface are to incoming solar energy. Surfaces which are whiter are said to have higher albedo, reflect more sunlight and melt less. Surfaces which are darker adsorb more sunlight and so melt more. Just how the albedo varies over time depends on a number of factors, including how wet the snow and ice is. One important factor that has been missed to date is bio-albedo. Each drop of water in wet snow and ice contains thousands of tiny microorganisms, mostly algae and cyanobacteria, which are pigmented - they have a built in sunblock - to protect them from sunlight. These algae and cyanobacteria have a large impact on the albedo, lowering it significantly. They also glue together dust particles that are swept out of the air by the falling snow. These dust particles also contain soot from industrial activity and forest fires, and so the mix of pigmented microbes and dark dust at the surface produces a darker ice sheet. We urgently need to know more about the factors that lead to and limit the growth of the pigmented microbes. Recent work by our group in the darkest zone of the ice sheet surface in the SW of Greenland shows that the darkest areas have the highest numbers of cells. Were these algae to grow equally well in other areas of the ice sheet surface, then the rate of melting of the whole ice sheet would increase very quickly. A major concern is that there will be more wet ice surfaces for these microorganisms to grow in, and for longer, during a period of climate warming, and so the microorganisms will grow in greater numbers and over a larger area, lowering the albedo and increasing the amount of melt that occurs each year. The nutrient - plant food - that the microorganisms need comes from the ice crystals and dust on the ice sheet surface, and there are fears that increased N levels in snow and ice may contribute to the growth of the microorganisms. This project aims to be the first to examine the growth and spread of the microorganisms in a warming climate, and to incorporate biological darkening into models that predict the future melting of the GrIS. References 1. Sasgen I and 8 others. Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303(2012). 2. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503, doi:10.1029/2011gl046583 (2011). 3. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci 2, 471-478 (2009).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fbcea8535db2b4ca20bcb5cd0576fa16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fbcea8535db2b4ca20bcb5cd0576fa16&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu