Powered by OpenAIRE graph
Found an issue? Give us feedback

UMICORE

UMICORE AG & CO KG
Country: Germany
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
11 Projects, page 1 of 3
  • Funder: European Commission Project Code: 284909
    more_vert
  • Funder: European Commission Project Code: 874972
    Overall Budget: 32,987,500 EURFunder Contribution: 24,986,700 EUR

    In the long haul transport sector, the reduction of real driving emissions and fuel consumption is the main societal challenge. The LONGRUN project will contribute to lower the impacts by developing different engines, drivelines and demonstrator vehicles with 10% energy saving (TtW) and related CO2, 30% lower emission exhaust (NOx, CO and others), and 50% Peak Thermal Efficiency. A second achievement will be the multiscale simulation framework to support the design and development of efficient powertrains, including hybrids for both trucks and coaches. With the proposed initiatives a leading position in hybrid powertrain technology and Internal Combustion Engine operating on renewable fuels in Europe will be guaranteed. A single solution is not enough to achieve these targets. The LONGRUN project brings together leading OEMs of trucks and coaches and their suppliers and research partners, to develop a set of innovations and applications, and to publish major roadmaps for technology and fuels in time for the revision of the CO2 emission standards for heavy duty vehicles in 2022 to support decision making with most recent and validated results and to make recommendations for future policies. The OEMs will develop 8 demonstrators (3 engines, 1 hybrid drivelines, 2 coaches and 3 trucks); within them technical sub-systems and components will be demonstrated, including electro-hybrid drives, optimised ICEs and aftertreatment systems for alternative and renewable fuels, electric motors, smart auxiliaries, on-board energy recuperation and storage devices and power electronics. This includes concepts for connected and digitalised fleet management, predictive maintenance and operation in relation to electrification where appropriate to maximise the emissions reduction potential. The 30 partners will accelerate the transition from fossil-based fuels to alternative and renewable fuels and to a strong reduction of fossil-based CO2 and air pollutant emissions in Europe

    more_vert
  • Funder: European Commission Project Code: 101069528
    Overall Budget: 5,289,220 EURFunder Contribution: 5,289,220 EUR

    Lithium-ion technology is the means to greener and more sustainable mobility and other mobile applications, but the process of cell manufacturing is still energy consuming and using environmentally harmful substances. The greenSPEED project offers solutions for new sustainable electrode and cell manufacturing processes with reduced energy consumption, lower carbon footprint and ZERO Volatile Organic Compounds (VOCs) emissions. To that aim, the project main target is developing a battery cell comprised of electrodes manufactured by innovative dry processes. Our composite cathode, based on Ni-rich NMC, is to be manufactured by scalable roll-to-roll dry electrode coating process, that fully removes the use of casting-solvents and eliminates the need of energy-intense drying-, condensate and transportation process required in state-of-the-art electrode fabrication. The greenSPEED high-capacity pure-silicon anode is to be manufactured taking full advantage of our innovative process based on Microwave-Assisted Plasma Enhanced Chemical Vapor Deposition (MW-PECVD), which deposits porous silicon directly on the copper current-collector starting from locally produced silane gas (SiH4). Moreover, the use of advanced modelling and simulation techniques including digital twins, artificial intelligence, and machine learning are to be employed to predict and optimise cell performance in early development stages, support the cell production process by virtually assessing the influence and importance of production parameters and thus minimising the number of experiments and to accelerate electrode production optimisation steps. The greenSPEED cell aims at increasing energy density (+69%) while reducing energy consumption (-32%) and costs (-21%) of production as compared to state-of-the-art Li-ion cells. The concepts here proposed have been already demonstrated at TRL 2/3 with the aim of reaching TRL 5/6 by the end of the project.

    more_vert
  • Funder: European Commission Project Code: 101091777
    Overall Budget: 13,777,400 EURFunder Contribution: 11,721,900 EUR

    CLEANHYPRO gathers some of the most recognised experts in Europe on the electrolysis field for clean hydrogen production and acknowledged facilitators of technology transfer, corporate finance, funding and coaching, making available (i) the most promising and breakthrough manufacturing pilots and (ii) advanced characterization techniques and modelling together with (iii) non-technical services through this Test Bed: while relevant improvement metrics can be defined, the potential network of reachable stakeholders counts thousands of businesses on an international scale. Key facts are reported below. Within the scope of CLEANHYPRO, several circular innovative materials and key components, four main electrolysis technologies and geometries will be covered, providing for the first time a single entry point for industrial partners, mainly SMEs, aspiring to answer their concerns but with minimum investment costs and reduction of risks associated with technology transfer, while opening-up opportunities for demonstration of materials and components (TRL7) and thus faster opening the market for these new products. The main KPIs for CLEANHYPRO: Technical: >20% cell productivity improvement, 30% faster verification, 27-58% and 22-79% cost reduction of technologies in CAPEX and OPEX respectively, 3-9% efficiency enhancement. Non-Technical: 4 Showcases, 4 certification schemes, ≥16 Democases, >100 reachable SMEs and > 300 reachable investors. INNOMEM stems from the consideration that the development of products based on key materials and components for electrolysis require access to finance and an optimised business planning, relying on a sound prior analysis of the market, of the economic impacts and capacity of a company. The project aims at developing and organizing a sustainable Open Innovation Test Bed (OITB) for electrolysis materials and components for different applications. The OITB will also offer a network of facilities and services through a SEP to companies.

    more_vert
  • Funder: European Commission Project Code: 241718
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.