Powered by OpenAIRE graph
Found an issue? Give us feedback

np Nemaura Pharma

Country: United Kingdom

np Nemaura Pharma

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S023054/1
    Funder Contribution: 6,434,350 GBP

    A drug is a molecule that acts upon biological processes in the body. In contrast, a medicine is a complex product that comprises the drug and other ingredients packaged into a final dosage form that can be administered to a patient to ensure there is a beneficial therapeutic effect with minimum side-effects. To achieve therapeutic effect it is essential to ensure that the drug is delivered to the appropriate site in the body, at the right time, and in the correct amount. This is challenging: some drug molecules are poorly soluble in biological milieu, while others are either not stable or have toxic side-effects and require careful processing into medicines to ensure they remain biologically active and safe. The new drug molecules arising from drug discovery and biotechnology have particularly challenging properties. Pharmaceutical technologies are central to developing medicines from these molecules, to ensure patients are provided with safe and efficacious therapy. The design and development of new medicines is an inherently complex and cross-disciplinary process, and requires both innovative research and highly skilled, imaginative, researchers. To sustain and reinforce the UK's future global competitiveness, a new generation of highly-trained graduates educated at doctoral level is required to deliver transformative new therapeutics. Our CDT will train an empowered network of at least 60 PhD students through a consortium of multiple industry partners led by the University of Nottingham and University College London. The involvement of partners from start-ups to major international pharmaceutical companies will ensure that our students receive the cross-disciplinary scientific knowledge needed to develop future medicines, and build the leadership, resilience and entrepreneurial skills crucial to allow them to function effectively as future leaders and agents of change. Through partnering with industry we will ensure that the research work undertaken in the CDT is of direct relevance to contemporary and future challenges in medicines development. This will allow the CDT research to make significant contributions to the development of new therapies, leading ultimately to transformative medicines to treat patients. Beyond the research undertaken in the CDT, our graduates will build careers across the pharmaceutical and healthcare sector, and will in the future impact society through developing new medicines to improve the health and well-being of individuals across the world. We will train our students in four key science themes: (i) predictive pharmaceutical sciences; (ii) advanced product design; (iii) pharmaceutical process engineering; and, (iv) complex product characterisation. This will ensure our graduates are educated to approach challenges in preparing medicines from a range of therapeutic molecules, including emerging cutting-edge actives (e.g. CRISPR, or locked RNAs). These are currently at a critical stage of development, where research by scientists trained to doctoral level in the latest predictive and product design and development technologies is crucial to realise their clinical potential. Our students will obtain comprehensive training in all aspects of medicines design and development, including pharmaceutical engineering, which will ensure that they consider early the 'end game' of their research and understand how their work in the laboratory can be translated into products which can be manufactured and enter the clinic to treat patients.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E001904/1
    Funder Contribution: 9,815,820 GBP

    NIMRC's research portfolio is at the heart of the national manufacturing agenda and is active in the generation of patents and the construction of full scale demonstrators to enhance technology transfer. The Centre has strong links with industry in a range of sectors including aerospace, automotive, instrumentation, power engineering, steel, textiles and clothing, and consumer product sectors. With the exception of a small number of blue-skies projects, all projects are driven by industrial need. During the past 3 years, the Nottingham Innovative Manufacturing Research Centre (NIMRC) has continued to succeed in its stated objectives. By exploiting synergies between themes and research strands within the Centre and with other academic groups and industry outside the Centre, NIMRC has continued to expand its world-leading research portfolio and develop new directions. From a start of 8 principal investigators in the IMRC, this year we have an additional 15 investigators participating in current projects within the portfolio, complemented by 22 researchers and 29 research students. In the past 3 years, 9 students have been been awarded a PhD and another 7 are currently submitting their dissertations.The quality, timeliness and novelty of NIMRC's research is highlighted by its publication record. Since the Centre began, staff have published widely in peer review journals and presented at prestigious international conferences.The IMRC status has attracted a wider research community both in the University and without. The NIMRC continues to develop strategic partnerships with research groups outside the University and include many internationally recognised centre's of manufacturing excellence. The Centre also has strong links with other IMRCs. Already, NIMRC has collaborative research projects with Warwick, Bath, Cranfield and Loughborough IMRCs. NIMRC is also participating in the Grand Challenge 3D Mintigration related to the economic Manufacture of 3D Miniaturised Devices . NIMRC has made excellent progress during the last 3 years towards its stated objectives. It believes that the future research strategy it has developed will continue to address both the immediate and longer term needs of the manufacturing industry and it looks forward to providing the enabling research needed to improve the competitiveness of UK plc. The importance of NIMRC's world-class research is demonstrated in the composition of the Industrial Advisory Board which includes 20 senior industrialists from well established UK manufacturing sectors. The Board is impressed with the work of the Centre and the rapport with the Board of PIs. Board members have their own examples of how their company has benefited from the work of the NIMRC. In summary, Rolls-Royce and the Industrial Advisory Board fully support the activities of the NIMRC and will continue to do so. Chair of NIMRC Industrial Advisory Board, Mr Stephen Burgess, Manufacturing Process and Technology Director, Rolls-Royce Plc.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.