Powered by OpenAIRE graph
Found an issue? Give us feedback
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
10,256 Projects, page 1 of 2,052
  • Funder: European Commission Project Code: 655421
    Overall Budget: 179,326 EURFunder Contribution: 179,326 EUR

    Indium (In) is an element that has recently gained great economic importance due to its application in strategic energy and information technologies. Future In shortages projected by the EC Joint Research Council are due to insufficient exploration for In, reflecting the poor understanding of the hydrothermal ore-forming processes that result in economic enrichment of In. Key questions are the relative importance of different geologically relevant ligands for hydrothermal In complexation, the role of anomalously metal-rich fluids, and the efficiency of different ore-deposition mechanisms for formation of economic deposits. The proposed Marie Curie action will address the hydrothermal transport of In through an integrated approach that links high-temperature experimental studies of the solubility and complexation of In with reconnaissance fluid inclusion studies of In deposits and geochemical modeling of ore-forming processes. The experimental research will combine solubility studies at 100-250°C with hydrothermal diamond-anvil cell experiments up to 600° and synchrotron X-ray spectroscopy. Based on the experimental results, thermodynamic data for the most important In complexes will be derived. The thermodynamic dataset will be used for modeling the control of key fluid parameters such as temperature, pressure and pH on the transport behavior of In in hydrothermal systems. The modeled data will be compared with In concentrations in fluid inclusions from hydrothermal In ore deposits, which will be determined by LA-ICPMS microanalysis. The outcome will be a quantitative understanding of the ore-forming processes that control transport and deposition of In in hydrothermal systems. The researcher will be part of a research network that will bring together scientists from diverse fields of geosciences and physics. This will create an exceptional training environment and will result in optimum transfer of research expertise and knowledge.

    more_vert
  • Funder: European Commission Project Code: 101114623
    Overall Budget: 2,211,200 EURFunder Contribution: 2,211,200 EUR

    This research program will use first-principles radiative plasma simulations to understand how neutron stars radiate. Neutron stars are the culprits of the most infamous astrophysical emission enigmas: 1) pulsar radio emission, 2) multi-messenger signals of compact-object binary mergers, and 3) simultaneous generation of giant flares and fast radio bursts from magnetars. These emission mechanisms have remained elusive because we do not have a self-consistent theory that combines plasma physics (describing microscopic motions and energy dissipation of the magnetized gas) and radiative processes (describing the reprocessing of the energy into radiation). This project combines the forefront plasma physics theory with exascale high-performance computing technologies to achieve two breakthroughs: 1) generation of first-principles 3D models of the radiative plasmas around pulsars, mergers, and magnetars; and 2) development of a novel open-source simulation toolkit for self-consistent and high-fidelity modeling of astroplasmas. These enable a quantitative understanding of the unsolved emission mechanisms (including efficiency, variability, and output spectra) and direct comparison to observations. Analyzing astronomical observations with these superior physics-constrained models enable direct tests of their validity and a leap in improving the accuracy of the modern nuclear/particle physics theories of the still-unknown neutron star equation of state. The PI has a world-leading role in computational astroplasma physics, an established record of impactful and innovative research in the astrophysics of neutron stars, and 10 years of experience in state-of-the-art high-performance computing solutions.

    more_vert
  • Funder: European Commission Project Code: 232826
    more_vert
  • Funder: European Commission Project Code: 725369
    Overall Budget: 1,342,130 EURFunder Contribution: 1,342,130 EUR

    Predicting the collective properties of strongly interacting matter at the highest densities reached within the present-day Universe is one of the most prominent challenges in modern nuclear theory. It is motivated by the desire to map out the complicated phase diagram of the theory, and perhaps even more importantly by the mystery surrounding the inner structure of neutron stars. The task is, however, severely complicated by the notorious Sign Problem of lattice QCD, due to which no nonperturbative first principles methods are available for tackling it. The proposal at hand approaches the strong interaction challenge using a first principles toolbox containing most importantly the machinery of modern resummed perturbation theory and effective field theory. Our main technical goal is to determine three new orders in the weak coupling expansion of the Equation of State (EoS) of unpaired zero-temperature quark matter. Alongside this effort, we will investigate the derivation of a new type of effective description for cold and dense QCD, allowing us to include to the EoS contributions from quark pairing more accurately than what is possible at present. The highlight result of our work will be the derivation of the most accurate neutron star matter EoS to date, which will be obtained by combining insights from our work with those originating from the Chiral Effective Theory of nuclear interactions. We anticipate being able to reduce the current uncertainty in the EoS by nearly a factor of two, which will convert into a precise prediction for the Mass-Radius relation of the stars. This will be a milestone result in nuclear astrophysics, and in combination with emerging observational data on stellar masses and radii will contribute to solving one of the most intriguing puzzles in the field – the nature of the most compact stars in the Universe.

    more_vert
  • Funder: Kone Foundation Project Code: Koneen Säätiö_202201720
    Funder Contribution: 122,000 EUR

    Työni tarkoituksena on tutkia Latvian paikannimiä, joita esitetään itämerensuomalaisiksi ja tarkistaa niille ehdotetut etymologiat historiallis-vertailevilla änneoppi- sekä paikannimistöntutkimusmetodeilla. Latviassa on asunut neljä itämerensuomalaista heimoa: liiviläiset, kreevinit, leivut ja lutsit, joten Latvian itämerensuomalainen paikannimistö jakautuu neljään kerrostumaan lähdekielen mukaan. Monografiassani jokaiselle kerrostumalle on omistettu erillinen luku, jossa paitsi varsinaista paikannimistöntutkimusta kuvaan lyhyesti myös heimon ja sen kielen historiaa. Tutkimustyössäni hyödynnän suomen kielen taitoani ja latvian kielen kohtalaista ymmärtämistäni ja muiden itämerensuomalaisten kielten, kuten esim. viron ja liivin tuntemustani. Vätöskirjatyölläni on kansainvälinen merkitys, sillä työ koskee historiallista Latvian aluetta, joten Latviassa on iso kiinnostus tutkimukseni tuloksiin. Lisäksi yksi tutkimistani heimoista, eli kreevinit, asuivat oletettavasti myös Liettuan alueella ja sen jälkiä on mahdollisesti jäänyt paikannimistöön. Niitä niimiä katson lyhyesti väitöskirjassani, joten tulokset voivat muuttaa käsityksiä myös Liettuan vierasperäisestä paikannimistöstä. Tässä tapauksessa on minulle avuksi liettuan kieli, jota puhun äidinkielenä. Latvian itämerensuomalaisten paikannimien tutkimustyö on haastava, sillä kyseessä ovat kadonneet sukukielet. Erityisesti kreevinin kieli on huonosti dokumentoitu, joten se vaikeuttaa mahdollisten kreevinin paikannimien analyysia. Mutta avuksi tulevat paremmin dokumentoidut muut sukukielet. Tutkimustyöni on pitkäjänteinen, sillä yhden kerrostuman tutkimus kestää ainakin vuoden, joten koko työn kesto on neljä vuotta. Tutkimustyöni tulosten ansiosta syntyy uusia käsityksiä Latvian ja mahdollisesti Liettuan itämerensuomalaisesta paikannimistöstä.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.