
UNESP
ROR: https://ror.org/00q3c5d02 , https://ror.org/020v13m88 , https://ror.org/00987cb86 , https://ror.org/00ccec020
Wikidata: Q10387795 , Q10387857 , Q10387791 , Q10387788 , Q10387915 , Q39487333 , Q1817137 , Q10387793 , Q10302852 , Q18467813 , Q10387797
FundRef: 501100009568
ROR: https://ror.org/00q3c5d02 , https://ror.org/020v13m88 , https://ror.org/00987cb86 , https://ror.org/00ccec020
Wikidata: Q10387795 , Q10387857 , Q10387791 , Q10387788 , Q10387915 , Q39487333 , Q1817137 , Q10387793 , Q10302852 , Q18467813 , Q10387797
FundRef: 501100009568
Funder
34 Projects, page 1 of 7
assignment_turned_in ProjectPartners:UNESPUNESPFunder: European Commission Project Code: 101085398Funder Contribution: 30,000 EURThe general objective of this Jean Monnet Module is to understand the crisis of democracy and regionalism, and its social impacts - aggravated by the Covid-19 Pandemic - and to propose ways to mitigate the diagnosed problems. We depart from the assumption that the more accurate the diagnosis, the better the conditions to adequately face the limiting or impeding scenarios of a plural and egalitarian society, something that has become more urgent with the Covid-19 Pandemic. We will focus on two regions as objects of study: Europe and Latin America. In each of them, the action will aim, on the one hand, to identify the processes and causes that are related to these crises, and, on the other hand, to understand which are the regional political-institutional mechanisms that have promoted fairer and more integrated societies. These objectives will be structured into two fronts of analysis: 1- Protection of human rights, democracy, citizenship and the environment and 2 -Development, regionalism and inclusion.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erasmusplus_::9ba47f8bfd9a14dd9e30f15eacf210af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=erasmusplus_::9ba47f8bfd9a14dd9e30f15eacf210af&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in ProjectFrom 2024Partners:Institut de Recherche en Informatique Mathématiques Automatique Signal, Institut de Recherche en Informatique Mathématiques Automatique Signal, UNESPInstitut de Recherche en Informatique Mathématiques Automatique Signal,Institut de Recherche en Informatique Mathématiques Automatique Signal,UNESPFunder: French National Research Agency (ANR) Project Code: ANR-23-CE40-0028Funder Contribution: 165,142 EURNon-smooth dynamical systems arise in many applications, in particular to model mechanical systems subjected to impact or electrical systems with switches. The main goal of the subject is to develop a qualitative theory similar to the one existing for smooth systems. A natural approach to study such systems is the regularization, which produces a family of smooth dynamical systems converging to the initial system in some suitable topology. One of the delicate issues is to establish under which conditions the dynamics of this regularizing family allows to deduce information about the dynamics in the limit non-smooth case. In 2006, Buzzi, Teixeira and da Silva proposed a geometric framework to study such regularization through blowings-up. This framework naturally relates the regularizing families mentioned above to singular perturbation systems defined on manifolds with corners; thus establishing a strong bridge between these two subjects. There is now a large literature on this subject, but mainly limited to the so-called systems of regular type, where the non-smoothness locus is a smooth hypersurface and a single blowing-up suffices. However, there are several cases of interest (such as systems with multiple switches) where such regularity condition fails. In a joint paper from 2018, Panazzolo and da Silva proposed a general theory of geometric regularization for systems of non-regular type. Many basic problems are still open, such as a complete qualitative study of germs of planar vector fields possessing a discontinuity locus of cross type. The main goal of this project is to further explore these subjects, by enhancing the collaboration between the Brazilian team (da Silva and Buzzi) and the French team (Panazzolo, Fruchard). One of our priorities will be to recruit and form a PhD student to work in this subject. We expect to supervise this student in a collaborative way, allowing him/her to make long stays on both universities during the project.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::6af0e781384a0a6d42253c412212adbf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::6af0e781384a0a6d42253c412212adbf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2023 - 2025Partners:UNESP, UMINHO, ULISBOA ISTUNESP,UMINHO,ULISBOA ISTFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: 2022.03151.PTDCFunder Contribution: 49,972 EURPhotovoltaic solar panels (PVP) are energy renewable systems capable of converting solar energy into electrical energy. These panels are formed by sets of photovoltaic (PV) cells that need sunlight to produce electrical energy.However, an excess of solar energy provides an increase in temperature on the cells surface, reducing the life and efficiency of these systems. The output power performance of a PV module decreases on average 0.5%/°C when it works above its ideal temperature, in most cases being 25°C [1]. Conventional cooling techniques, such as the use of natural air convection, are reaching their limits. Thus, it is essential to develop alternative cooling systems using liquids, to avoid overheating and possible failure of the devices. Single-phase flows, two-phase flows and nanofluids (NFs) are potential candidates to replace air-cooling techniques [2,3]. Generally, heat exchangers, serpentine type, are coupled to PV modules in order to reduce their operating temperature and consequently improving their power and efficiency. Despite the research efforts in developing new heat exchangers, still there is a need to improve their thermal performance. In addition, to the thermal efficiency, it essential to verify whether the energy expenses for pumping the fluids and the implementation costs with extra accessories is an efficient option for these systems. The main objective of this project is to develop an innovative heat exchanger for cooling a PVP through the flow of thermofluids by means of forced convection in order to prevent the nominal operating temperature of the PV cells from exceeding the maximum allowed and thus not losing efficiency. This proposal will first test pure water as a cooling fluid and in a second stage other alternative thermofluids will used such as glycol and NFs [3–6]. The main novelty and uniqueness of this project is the application of polydimethylsiloxane (PDMS) to fabricate the heat exchanger system. PDMS is a low cost, transparent and versatile material that allows the incorporation of materials with high thermal properties. Although the thermal conductivity (TC) of pure PDMS is low, it can be extremely increased by the incorporation of materials having high thermal properties [7-10]. Another important characteristic of PDMS, is its ability to mold itself to a specific surface and as a result increases the physical contact between the heat exchanger and the material to be cooled, unlike the conventional heat exchangers, such as those made of circular geometries [11]. For instance, a recent work has shown that a serpentine-type heat exchanger, made of stainless steel with a tubular geometry, did not show satisfactory performance when using pure water in forced flow to cool down a PV module [11]. By using the proposed PDMS heat exchanger this problem will be overcome and the cooling efficiency will be significantly increased. The preparation of the PDMS is a simple procedure that does not require clean rooms or specialized human technical skills and consists of a mixture of a pre-polymer plus a curing agent, where its mechanical properties can be changed according to the proportions adopted. As PDMS has a low TC, this project will incorporate high TC materials into the PDMS to increase its TC and consequently intensify the heat exchange when in contact with the PVP. The combination of the PDMS with materials having high thermal properties (such as carbon based nano/macro particles or industrial wastes from metallurgy plants) is extremely simple to be performed and can be added during the curing process [7-10,12,13].For the design and fabrication of the serpentine molds, numerical simulations and 3D printing will be used, allowing, in a simple way, to optimize the geometry and size of the flow channels. In summary, the main advantages of the proposed PDMS serpentine-type heat exchanger are as follows: low cost and simple fabrication; can be easily molded and attached to the PV system; the geometry can be easily modified; ability to have rectangular cross section that will increase the area available for exchanging heat with the thermofluid; easy to incorporate high TC materials into the PDMS that will significantly increase its TC; PDMS can be transparent and as result it will be possible to perform flow and thermal detailed studies improve the heat exchange efficiency. In this proposal there are many concepts and research fields involved and as a result it is essential to have a multidisciplinary research team (see Fig.1 in figures.pdf). Hence, this project team combines the expertise of the project leader in NFs and heat transfer [3, 6, A, B] with the knowledge of waste management [C], micro and nanofluidics [6, D], PDMS composites [E] and numerical simulation [A]. In addition, the center for waste valorisation (CVR) that is a technological interface center fully dedicated to the industrial waste selection and nanomaterials recovery will play an important role in this project. Os painéis solares fotovoltaicos (PVP) são sistemas de energia renovável capazes de converter a energia solar em energia elétrica. Eles são formados por conjuntos de células fotovoltaicas (PV) que precisam da luz solar para produzir energia elétrica. No entanto, um excesso de energia solar proporciona um aumento de temperatura na superfície das células, reduzindo a vida útil e a eficiência desses sistemas. O desempenho da potência de saída de um módulo fotovoltaico diminui em média 0,5%/°C quando trabalha acima de sua temperatura ideal [1]. As técnicas convencionais de arrefecimento, como o uso da convecção natural a ar, estão atingindo seus limites. Assim, é fundamental desenvolver sistemas alternativos de refrigeração utilizando líquidos, para evitar superaquecimento e possível falha dos dispositivos. Escoamentos monofásicos e bifásicos e nanofluidos (NFs) são potenciais candidatos a substituir as técnicas de arrefecimento a ar [2,3]. Geralmente, os trocadores de calor (TC) do tipo serpentina são acoplados aos módulos fotovoltaicos com o objetivo de reduzir sua temperatura de operação e consequentemente melhorar sua potência e eficiência. Apesar dos esforços das pesquisas no desenvolvimento de novos TC, ainda há necessidade de melhorar seu desempenho térmico. Além da eficiência térmica, é fundamental verificar se os gastos com energia para bombeamento dos fluidos e os custos de implantação com acessórios extras é uma opção eficiente para esses sistemas. O principal objetivo deste projeto é desenvolver um TC inovador para resfriamento de um PVP através do fluxo de termofluidos por meio de convecção forçada, a fim de evitar que a temperatura nominal de operação das células fotovoltaicas ultrapasse a máxima permitida e, assim, não perca eficiência. Esta proposta testará primeiro a água pura como fluido de arrefecimento e, em uma segunda etapa, outros termofluidos alternativos serão usados, como glicol e NFs [3-6]. A principal novidade deste projeto é a aplicação do polidimetilsiloxano (PDMS) para fabricar o sistema trocador de calor. O PDMS é um material de baixo custo, transparente e versátil que permite a incorporação de materiais com altas propriedades térmicas. Embora a condutividade térmica (CT) do PDMS puro seja baixa, ela pode ser extremamente aumentada pela incorporação de materiais com altas propriedades térmicas [7-10]. Outra característica importante do PDMS, é sua capacidade de se moldar a uma superfície específica e com isso aumentar o contato físico entre o TC e o material a ser arrefecido, diferentemente dos TC convencionais, como os de geometrias circulares [11]. Por exemplo, um trabalho recente mostrou que um TC do tipo serpentina, feito de aço inoxidável com geometria tubular, não apresentou desempenho satisfatório ao usar água em fluxo forçado para resfriar um módulo fotovoltaico [11]. Ao usar o trocador de calor PDMS proposto, este problema será superado e a eficiência de arrefecimento será significativamente aumentada. A preparação do PDMS é um procedimento simples que não requer salas limpas ou habilidades técnicas especializadas e consiste em uma mistura de um pré-polímero mais um agente de cura, onde suas propriedades mecânicas podem ser alteradas de acordo com as proporções adotadas. Como o PDMS possui baixa CT, este projeto irá incorporar materiais de alta CT no PDMS para aumentar seu CT e consequentemente intensificar a troca de calor quando em contato com o PVP. A combinação do PDMS com materiais com altas propriedades térmicas é extremamente simples de ser realizada e pode ser adicionada durante o processo de cura [7–10,12,13]. Para o projeto e fabricação dos moldes em serpentina, serão utilizadas simulações numéricas e impressão 3D, permitindo, de forma simples, otimizar a geometria e o tamanho dos canais de escoamento. Assim, as principais vantagens do trocador de calor tipo serpentina PDMS proposto são: baixo custo e fabricação simples; pode ser facilmente moldado e fixado ao sistema fotovoltaico; a geometria pode ser facilmente modificada; capacidade de ter seção transversal retangular que aumentará a área disponível para troca de calor com o termofluido; fácil de incorporar materiais de alto CT no PDMS; o PDMS pode ser transparente e, como resultado, será possível realizar estudos detalhados de escoamento e térmicos para melhorar a eficiência da troca de calor. Nesta proposta há muitos conceitos e campos de pesquisa envolvidos e como resultado é essencial ter uma equipe de pesquisa multidisciplinar (ver Fig.1 em figures.pdf). Assim, esta equipe combina a experiência do líder do projeto em NFs e transferência de calor [3, 6, A, B] com o conhecimento de gerenciamento de resíduos [C], micro e nanofluídica [6, D], compósitos PDMS [E] e simulação numérica [A]. Além disso, o centro de valorização de resíduos (CVR) que é um centro de interface tecnológica totalmente dedicado à seleção de resíduos industriais e recuperação de nanomateriais terá um papel importante neste projeto.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::873158b16f7e5357655656470ca07299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::873158b16f7e5357655656470ca07299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2015 - 2018Partners:CICECO/UA, UA, UNESPCICECO/UA,UA,UNESPFunder: Fundação para a Ciência e a Tecnologia, I.P. Project Code: FAPESP/19793/2014Funder Contribution: 138,336 EURAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::13f35fcab716639ac1fe80dee7a90b12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=fct_________::13f35fcab716639ac1fe80dee7a90b12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2016Partners:UNESP, São Paulo State University, University of Birmingham, University of BirminghamUNESP,São Paulo State University,University of Birmingham,University of BirminghamFunder: UK Research and Innovation Project Code: ES/N004663/1Funder Contribution: 90,886 GBPThis proposed partnership addresses key challenges in planning for sustainable urban environments. The themes of water and energy are of strategic relevance to development goals in Brazil. The proposed partnership activities will build on an established collaborative knowledge base, bringing together social scientists and engineers with substantial track records in relation to sustainable urban development. In Brazil, the water/energy nexus is a research theme of major importance, due to water scarcity, and since >70% of Brazilian electricity comes from hydroelectricity. Evidence suggests that interventions at different spatio-temporal scales are required to reduce significant impacts-for-development resulting from mismanagement of water/energy resources. The inter-disciplinary project team and proposed activities shall afford innovative forms of dissemination and knowledge exchange between diverse academics, professionals and publics. Planned activities will include publicly-available research summaries, an online research network, the development of an existing app for the Brazilian context, a summer school and theory/practice workshops, and collaborative skills development/sharing. These activities will ensure that the project has extensive impact in Brazil, with potential to deliver long-term benefits in areas of strategic relevance to this call (water/energy), for the welfare of society in diverse developing contexts. Specifically, building upon the project team's existing links, the project will produce impacts in collaboration with NGOs focused upon sustainable development in Latin America and national/regional partners directly involved in the Brazilian water/energy nexus. Finally, the project will support the research team as it develops larger, related collaborative research projects on the crucial theme of water/energy in sustainable urban development.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::65ba69e8372ebeb5dbfdfd5de1bc0e62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::65ba69e8372ebeb5dbfdfd5de1bc0e62&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right