Powered by OpenAIRE graph
Found an issue? Give us feedback

Koç University

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
194 Projects, page 1 of 39
  • Funder: European Commission Project Code: 252579
    more_vert
  • Funder: European Commission Project Code: 226062
    more_vert
  • Funder: European Commission Project Code: 618885
    more_vert
  • Funder: European Commission Project Code: 101078097
    Overall Budget: 1,588,710 EURFunder Contribution: 1,588,710 EUR

    Membrane-less compartmentalization has emerged as a powerful, yet mysterious, process for the spatiotemporal control of fundamental cellular processes. How the identity of a membrane-less organelle is established, maintained, and dynamically altered remains unclear. In this project, I will investigate the fascinating biology of the centriolar satellites (hereafter CS), a vertebrate-specific membrane-less organelle. CS was first discovered as granules that cluster and move around centrosomes – major microtubule-organizing centers of animal cells. Recently, my lab and others have placed CS in a new pathway for targeting proteins to centrosomes and cilia, and identified an important role for CS in cell division, cellular signalling and neurogenesis. While CS functions shone light in these organelles, little is known about their own biochemistry and how that affects their function. Recent studies, including my own, revealed unique and intriguing CS properties that likely underlie the rules underpinning their regulation and function. The properties of CS granules are regulated in space, time and tissue, as we observe differential size and composition within the cell and in different cell types. Building on these discoveries, I hypothesise that CS perform its different functions by acting as adaptive organelles that remodel its granule features in response to intrinsic and extrinsic cues. With this project I propose to investigate the molecular basis of (1) CS scaffold assembly and disassembly, (2) CS granule size, composition, architecture and dynamics; and (3) CS heterogeneity within a cell and in different cell types. This project will combine in vitro reconstitution, imaging-based assays, a new SatelliteGFP mouse and our expertise in proximity proteomics and biochemical purifications. Our results will have broad implications in unveiling how cells organize its cytoplasm in time and space appropriate to its differentiation status, environment and organismal health.

    more_vert
  • Funder: European Commission Project Code: 301239
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.