Powered by OpenAIRE graph
Found an issue? Give us feedback

ESTEC

European Space Research and Technology Centre
6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: ST/T003227/1
    Funder Contribution: 141,042 GBP

    The backbone network in future telecommunication systems will move from copper and fibre to mm-wave wireless connections, allowing rapid deployment, mesh-like connectivity with fast data rates of tens of gigabits per second for future mobile applications such as cloud computing, big data, virtual reality and the Internet of Things. The main restriction in the uptake of mm-wave wireless mobile communications is the challenge in forming the mm-wave backhaul links due to the lack of high power (kilo-watt) wideband mm-wave amplifiers. The gyro-amplifiers developed under STFC IPS Project (ST/P001890/1) offers a unique opportunity to fill a long standing gap in the generation of high power coherent millimetre wave radiation with its amplification with an unprecedented 6% instantaneous bandwidth and an unrivalled power of 3.4kW at 93 GHz. For satellite communications the gyro-TWA has the power at W-band frequencies to overcome attenuation due to rain and moisture in the atmosphere while possessing sufficient bandwidth (6%) for high data rate transmission to multiple satellites. Building on the recent success of W. He, C. R. Donaldson, L. Zhang et al PRL 2017, 119 no. 18, p. 184801, and L. Zhang, C. R. Donaldson et al IEEE Electron Device Letters 2018, vol. 39, no. 7, pp. 1077-1080 where short pulse (sub-microsecond) 93GHz gyro-TWA operation was demonstrated the procurement of a 60kV, 1.2A DC power supply is required to enable continuous wave gyro-TWA operation which will result in a paradigm shift in what is achievable for ground based, cellular telecommunications networks and satellite communications.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/D011639/1
    Funder Contribution: 166,019 GBP

    The purpose of this work is to investigate algorithms and hardware architectures for context-based statistical lossless compression of visual and data content using dynamically reconfigurable hardware to support optimal modelling strategies for each data and compression type. Entropy coding of the modelling output will be performed using a statically configured arithmetic coding engine. The current trend of network convergence where visual and data content are transmitted along the same physical channel suggests a technology capable of delivering optimal compression ratios and fast adaptation to the nature of the content will become increasingly important. These are the two key concepts that will drive this research effort. Context-based statistical compression differs fundamentally from dictionary-based compression as used in popular algorithms such as the ZIP family and it is recognised as being able to offer superior compression ratios to these. However, this has been only achieved with complex software algorithms that require considerable amounts of memory capacity and have very low throughputs in the range of thousands of CPU cycles per byte. This means that power-hungry Pentium 4 class microprocessors running at GHz rates are needed to provide the required computing power to run these advanced statistical algorithms and even these CPUs will find difficult to support applications such as telemedicine where still images, video and scientific data would require lossless real-time compression with high bandwidths. Other applications such as data, video and image transmission in space require the performance to be achieved in an energy and silicon efficient platform. To achieve the demands set by these applications we propose the first universal lossless compression hardware core combining context-based variable-order statistical modelling and arithmetic coding. At present, there are no practical hardware realisations of these techniques, since no satisfactory solutions have yet been proposed for a viable architecture.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M013529/1
    Funder Contribution: 98,559 GBP

    Microwave filters are essential components in many wireless systems from mobile base stations to satellites. They are used to select useful signals while rejecting unwanted interferences or spurious signals. The most widely used microwave filters are formed of resonators that are electromagnetically coupled together to generate the required transmission responses between the two ports - input and output. The properties of the resonators and the couplings between them can be mathematically represented by a so-called 'coupling matrix'. Such a matrix may be found - synthesised - from the required frequency response. The synthesis of two-port filters is an established art. Recently this coupling matrix approach has been extended from two-port filters to multi-port filtering networks (MPFNs). The fundamental difference between a filter and a MPFN is the 'junction resonators', introduced to route the signal to different ports. Such resonators serve not only as resonant poles as in a filter, but also as splitters of the signal which are traditionally achieved by non-resonant transmission lines. One of the microwave circuits that benefit most from the MPFN concept is a multiplexer, also known as a combiner or a filter bank. It basically contains multiple interconnected filters, used to combine multiple channels and feed to one antenna for transmission or reception. It is one of the most complex passive circuits in wireless base stations and satellite payloads. Conventionally all the channel filters are connected to the common port through a signal distribution network based on transmission lines. Using the MPFN concept, the transmission line network can be replaced with resonators. This significantly increases the selectivity of the multiplexer without sacrificing the circuit size, which is highly desired by industrial applications. This means the multiplexer, usually a large component, can be reduced in size and mass for a more contact system. In the case of satellites, this can be translated to a significant cost reduction. The exclusive use of resonators in a microwave circuit also enables integrating filtering function into traditional non-filtering circuit. For instance, common microwave power dividers and couplers are transmission-line based with very limited selectivity. By using the MPFN concept, all-resonator-based power dividers and couplers can be realised with embedding filtering functions. This means two circuit functions are merged into one circuit. This approach is known as 'co-design'. Despite the significant increase in the usage of the MPFN concept and co-design approach in microwave circuit design, there are still significant challenges associated with the technique. The synthesis of the MPFNs is much more demanding than the filters. It requires a new understanding of the coupling characteristics around the junction resonators. The currently inaccessible synthesis technique impedes the take-up of the MPFN concept by microwave engineers. Also there are concerns with the bandwidth and power handling capability of the MPFN-enable devices, as the junction resonator is narrowband in nature and may be a concentration of power. This project aims to develop a robust, more accessible and applicable synthesis technique for MPFNs and to address the practical challenges in bandwidth and power handling by proposing novel junction resonators. The research will help to release the full potentials of MPFNs for industrial applications. There is no doubt the MPFN concept will lead to more innovations in microwave circuits. Built on from the synthesis technique, the project will investigate two new circuit concepts. It is expected new research directions on novel microwave circuits, opportunities for further development and commercial exploration will be generated from this project.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N011511/1
    Funder Contribution: 291,024 GBP

    The grounding line of the Antarctic Ice Sheet is the point at which ice leaves the continent and enters the ocean and contributes to sea level. It is where the ocean has its greatest influence on inland flow through bottom melting of floating ice shelves. It is, in fact, a zone (the Grounding Zone) where tidal motion, basal melting and ice dynamics are all key controls on its structure. The GZ is a dynamic feature of the ice sheet and changes in its location and structure may indicate the development of an instability in ice flow or a change in ice motion that will impact sea level and the future evolution of the ice sheet. Identifying and monitoring the evolution of the GZ is important, therefore, for providing i) an early warning of changes in state of the inland ice, ii) as an input into numerical models of ice sheet flow and iii) for measuring the flux of ice leaving the ice sheet. The ice thickness at the grounding line is an essential variable for determining the flux of ice leaving the ice sheet based on observations of ice velocity. To date, there has been no satisfactory way to investigate the evolution of the GZ for the whole of Antarctica. The aim of this project is to achieve this goal using a novel approach applied to CryoSat 2 data. This satellite was launched in 2010 and has a unique instrument on board called the SIRAL, which provides, for the first time, the ability to resolve at high temporal and spatial resolution the detailed structure of the GZ. Proof of concept analyses indicate its huge potential for this but work is required to i) improve and verify the accuracy of the CryoSat 2 data and ii) fully develop the methods for studying the GZ. Once this is achieved, we intend to monitor the evolution of the GZ over at least a seven year period and hopefully extending this further into the future using the same methods. In the process, we will also address an outstanding issue related to the accuracy of the ice thickness estimates derived from surface elevation in the GZ and greatly improve the accuracy of ice thickness estimates over the freely floating shelves that fringe almost the entire coastline of Antarctica.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M028135/1
    Funder Contribution: 697,985 GBP

    Our proposal requests five distinct bundles of equipment to enhance the University's capabilities in research areas ranging across aerospace, complex chemistry, electronics, healthcare, magnetic, microscopy and sensors. Each bundle includes equipment with complementary capabilities and this will open up opportunities for researchers across the University, ensuring maximum utilisation. This proposal builds on excellent research in these fields, identified by the University as strategically important, which has received significant external funding and University investment funding. The new facilities will strengthen capacity and capabilities at Glasgow and profit from existing mechanisms for sharing access and engaging with industry. The requested equipment includes: - Nanoscribe tool for 3D micro- and nanofabrication for development of low-cost printed sensors. - Integrated suite of real-time manipulation, spectroscopy and control systems for exploration of complex chemical systems with the aim of establishing the new field of Chemical Cybernetics. - Time-resolved Tomographic Particle Image Velocimetry - Digital Image correlation system to simultaneously measure and quantify fluid and surface/structure behaviour and interaction to support research leading to e.g. reductions in aircraft weight, drag and noise, and new environmentally friendly engines and vehicles. - Two microscopy platforms with related optical illumination and excitation sources to create a Microscopy Research Lab bringing EPS researchers together with the life sciences community to advance techniques for medical imaging. - Magnetic Property Measurement system, complemented by a liquid helium cryogenic sample holder for transmission electron microscopy, to facilitate a diverse range of new collaborations in superconductivity-based devices, correlated electronic systems and solid state-based quantum technologies. These new facilities will enable interdisciplinary teams of researchers in chemistry, computing science, engineering, medicine, physics, mathematics and statistics to come together in new areas of research. These groups will also work with industry to transform a multitude of applications in healthcare, aerospace, transport, energy, defence, security and scientific and industrial instrumentation. With the improved facilities: - Printed electronics will be developed to create new customized healthcare technologies, high-performance low-cost sensors and novel manufacturing techniques. - Current world-leading complex chemistry research will discover, design, develop and evolve molecules and materials, to include adaptive materials, artificial living systems and new paradigms in manufacturing. - Advanced flow control technologies inside aero engine and wing configurations will lead to greener products and important environmental impacts. - Researchers in microscopy and related life science disciplines can tackle biomedical science challenges and take those outputs forward so that they can be used in clinical settings, with benefits to healthcare. - Researchers will be able to develop new interfaces in advanced magnetics materials and molecules which will give new capabilities to biomedical applications, data storage and telecommunications devices. We have existing industry partners who are poised to make use of the new facilities to improve their current products and to steer new joint research activities with a view to developing new products that will create economic, social and environmental impacts. In addition, we have networks of industrialists who will be invited to access our facilities and to work with us to drive forward new areas of research which will deliver future impacts to patients, consumers, our environment and the wider public.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.