Powered by OpenAIRE graph
Found an issue? Give us feedback

Ministère de la Défense

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
15 Projects, page 1 of 3
  • Funder: European Commission Project Code: 241832
    more_vert
  • Funder: European Commission Project Code: 242297
    more_vert
  • Funder: European Commission Project Code: 261693
    more_vert
  • Funder: European Commission Project Code: 101021673
    Overall Budget: 6,065,820 EURFunder Contribution: 4,997,560 EUR

    Maritime Domain Awareness is the combination of activities, events and threats in the maritime environment that could have impact on marine activities and EU territory. During the past decades, advances in Information and Communication Technologies have provided better means to monitor and analyse vessel activity. Today private and public source of data such the Automatic Identification System or space related data can be combined with Vessel Traffic Services, Vessel Traffic Management Systems and Vessel Traffic Monitoring & Information Systems data enabling the development of value added information resulted by the combination of such data. European waters are navigated daily by some 12,000 vessels, which share their positions to avoid collisions, generating a huge number of positional messages every month. It is important that this overabundance of information will not overwhelm the marine operator in charge for decision-making. The challenge is twofold: on one side encourage the exchange of heterogeneous data among administration valorising the CISE network currently in place, on the other exploit at the best these datasets by means of automated processing in a way to minimise false alert that might results by an incorrect processing or interpretation of the results. PROMENADE will improve solutions for the vessel tracking, behaviour analysis and automatic anomaly detection by means of the application Artificial Intelligence (AI) and Big Data (BD) technologies, and to promote collaborative exchange of information between maritime surveillance authorities, shortening the time to market and assuring the compliance with legal and ethical regulations. An open, service-based toolkit implementing “state of art” AI / BD techniques also benefiting of HPC (High Performance Computing) platform is the core activity of the project. The project’s developments will be demonstrated and evaluated in 3 operational scenarios and 1 simulated defined by Border Guards Authorities.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-11-ASTR-0022
    Funder Contribution: 292,513 EUR

    This project addresses the problematic raised in Thematic axis 7, concerning the analysis and evaluation of the risk arising from a NRBC threat, more specifically the biological threat due the consequences of anthrax contamination. It presents a strong dual outcome of the research, both civilian and with specificity for answering defense needs. The bioterrorist anthrax US attack in 2001 has exemplified the life threatening consequences on the health of the civil and military personnel exposed to anthrax spores, and the ensuing economy and societal disruptions. A better understanding of the disease could thus be a means to decrease the health consequences of exposure to anthrax spores and thus impact the costs generated by such bioterrist acts for the society. The initial steps of anthrax infection are still insufficiently understood. A gap of knowledge exist on the precise mechanisms used by B. anthracis to interact, successfully invade and disseminate into the host. A wealth of data has been accumulated in in vitro systems, but their relevance to in vivo conditions of infection is regularly questionned. Translation to in vivo models are severely hampered by a lack of appropriate methods. The proposed project aims at imaging in vivo and in real time the initial steps of anthrax, both cutaneous and inhalational, by combining powerful complementary fluorescence methodologies, biphotonic microscopy and ex vivo 3-D reconstruction on BSL3 B. anthracis infected tissues of mice displaying fluorescent lymphatic and blood vessels, or fluorescent immune cells (such as dendritic cells). Through these imaging technologies combined to histological and ultrastructural analysis, we will visualize and characterize in real time the entry of B. anthracis, the local dynamics of the bacterial differentiation steps (germination and capsule and toxin production) and dynamically define the local subversive effects of the toxins on the local host control mechanisms during an infection; more specifically on the integrity of lymphatic and blood endothelial cells and the dynamics of innate immune cell recruitment. Overall, the combination of these imaging approaches will provide a unique and novel picture of B. anthracis infection. The outcomes of this project include: - a better understanding of the critical initial steps of anthrax, both cutaneous and inhalational - the development of new molecular approaches to the early treatment of B. anthracis infection and vaccination strategies. - the development of novel visualization technologies to follow in real time an infection that could be applied to other pathogens of interest This work should also make it possible to improve the societal and economic countermeasures to be taken in cases of biological terrorist threats.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right
1 Organizations, page 1 of 1
8 Organizations, page 1 of 1

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.