Powered by OpenAIRE graph
Found an issue? Give us feedback

ICPE

Institutul de Cercetari Electrotehnice
12 Projects, page 1 of 3
  • Funder: European Commission Project Code: 608784
    more_vert
  • Funder: European Commission Project Code: 101017284
    Overall Budget: 8,002,730 EURFunder Contribution: 6,911,700 EUR

    ACROBA project aims to develop and demonstrate a novel concept of cognitive robotic platforms based on a modular approach able to be smoothly adapted to virtually any industrial scenario applying agile manufacturing principles. The novel industrial platform will be based on the concept of plug-and-produce, featuring a modular and scalable architecture which will allow the connection of robotic systems with enhanced cognitive capabilities to deal with cyber physical systems (CPS) in fast-changing production environments. ACROBA Platform will take advantage of artificial intelligence and cognitive modules to meet personalisation requirements and enhance mass product customisation through advanced robotic systems capable of self-adapting to the different production needs. A novel ecosystem will be built as a result of this project, enabling the fast and economic deployment of advanced robotic solutions in agile manufacturing industrial lines, especially industrial SMEs. The characteristics of the ACROBA platform will allow its cost-effective integration and smooth adoption by diverse industrial scenarios to realise their true industrialisation within agile production environments. The platform will depart from the COPRA-AP reference architecture for the design of a novel generic module-based platform easily configurable and adaptable to virtually any manufacturing line. This platform will be provided with a decentralized ROS node-based structure to enhance its modularity. ACROBA Platform will definitely serve as a cost-effective solution for a wide range of Industrial sectors, both inside the consortium as well as additional industrial sectors that will be addressed in the future. The Project approach will be demonstrated by means of five industrial large-scale real pilots, Additionally, the Platform will be tested through twelve dedicated Hackatons and two ACROBA On-Site Labs for technology transfer experiments.

    more_vert
  • Funder: European Commission Project Code: 605502
    more_vert
  • Funder: European Commission Project Code: 101091392
    Overall Budget: 4,645,770 EURFunder Contribution: 4,645,770 EUR

    Electric machines and drives, including various types of electric motors, play an ever-increasing role in the way of making Europe the first climate neutral continent in the world. In order to achieve a breakthrough in the field of energy efficient electric motors, novel approaches are needed: high performance sustainable materials and multi-material manufacturing technologies suitable for complex geometrics and capabilities to design and simulate structures and components based on those. The ambitious goal of MultiMag is to develop novel design tools, high performance materials and multi-material additive manufacturing (MM-AM) processes, hence, to manufacture ready assembled lightweight components for electric machines and leading to better performing machines, improved energy efficiency and shorter lead times. After use, the components can be dismantled, and the materials recycled effectively. MultiMag takes the full advantage of multi-material additive manufacturing. Stacked rotor and stator structures, combining dissimilar magnetic and electric insulating materials are developed, manufactured and validated to ensure mechanical, thermal, electrical and magnetic performance. Internal structures, enabling more efficient cooling, are studied and designed. Achieving ambitious objectives of MultiMag requires a holistic approach and innovations in all sectors, namely in design, materials, manufacturing, use and end-of-life. Each of these vital areas are addressed by MultiMag activities. We will develop a framework and specific toolbox for addressing complex design challenges, which are multi-material, multi-functional and multi-physics. Evaluation and development of matching material properties enabling to join dissimilar materials using AM processes is one of the key focuses of MultiMag. MultiMag approach requires also MM-AM processes to be developed further, as well as recycling of REEs.

    more_vert
  • Funder: European Commission Project Code: 608849
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.