Powered by OpenAIRE graph
Found an issue? Give us feedback

ISAE

National Higher School of Aeronautics and Space
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
71 Projects, page 1 of 15
  • Funder: European Commission Project Code: 2018-1-FR01-KA103-046289
    Funder Contribution: 89,665 EUR

    L’ISAE-SUPAERO, un des leaders mondiaux de la formation supérieure en ingénierie aéronautique et spatiale participe au programme Erasmus+ depuis sa création en 1987. Le programme Européen contribue amplement à la réalisation de cette ouverture à l’international et au développement de l’industrie aéronautique et spatiale européenne en offrant aux étudiants un cadre ainsi qu’un soutien linguistique et financier à leur mobilité. Dans le cadre de la formation en Europe, l’ISAE-SUPAERO participe activement à plusieurs réseaux internationaux: PEGASUS (Partnership of a European Group of Aeronautics and Space Universities), T.I.M.E. (Top Industrial Managers for Europe), ECATA (European Consortium for Advanced Training in Aerospace), et AGUPP (AIRBUS Group University Partner Programme). Au plan régional, l'ISAE-SUPAERO est membre de la COMUE Université Fédérale Toulouse Midi-Pyrénées (communauté d’universités et d’établissements de la région).Les objectifs pour la mise en place de la convention de subvention 2018 ont été les suivants :-Améliorer le nombre de mobilités sortantes en Europe,-Encourager la mobilité des enseignants et du personnelPour cela, l’ISAE-SUPAERO est passé d’un financement de 16 mois à 24 mois.Pour la mobilité sortante, la majorité des étudiants en mobilité d’études ou de stage sont issus de la formation ingénieur. Les étudiants admis en Master ou Mastère Spécialisé n’ont pas d’obligation internationale. Les étudiants de Master qui partent en mobilité le font dans le cadre d’un stage (Master thesis ou projet de recherche). La mobilité au sein de la formation ingénieur ne peut en pratique être réalisée qu’en 2ème ou 3ème année du cursus (niveau Master), soit en substituant le 2ème semestre de la 2ème année, soit en remplaçant la 3ème année par un cursus de double diplôme, soit enfin, en effectuant le stage obligatoire de fin d’études à l’étranger, au cours du 2ème semestre de la 3ème année. Le nombre de mobilités études sortantes est en légère augmentation comparé à celui de la convention de subvention 2017. Au titre de la convention 2018, 39 étudiants Ingénieurs de l’ISAE-SUPAERO ont bénéficié d’un séjour d’études dans le cadre du programme Erasmus+ sur un total de 107 étudiants en mobilité études à l’international en 2018/2019. Cela correspond à 36% des départs en mobilité études avec le programme Erasmus+. Les étudiants avec le statut militaire Ingénieurs des Etudes et Techniques de l'Armement (IETA) ont bénéficié de la prise en charge financière de leur mobilité, c’est pourquoi ces 4 étudiants sont non allocataires de fonds Erasmus. De plus, 10 étudiants ont bénéficié d'une mobilité stage Erasmus+, soit au total 49 étudiants en mobilité avec le programme Erasmus+ pour 2018/2019.Pour la mobilité entrante, le cursus unique d’ingénieur s’accompagne d’une diversification des voies de recrutement conduisant au diplôme d’ingénieur, notamment par l’accueil d’un plus grand nombre d’étudiants étrangers en provenance de nos universités partenaires (dont des étudiants Erasmus la 1ère année de leur cursus diplômant), ce qui devrait accroître le rayonnement international de l’Institut.Cette convention de subvention a été l’occasion d’envoyer pour la première fois des professeurs et des administratifs en mobilité :- un enseignant est parti dans le cadre d’une mobilité STA dans une université partenaire à TU Graz (Autriche), poursuivant ainsi un échange d'enseignants qui avait été initié lors de la convention de subvention de 2017.- des membres du staff sont partis dans nos universités partenaires afin de rencontrer leurs homologues, échanger leurs expériences pour développer l’accueil mutuel des étudiants, la concordance des cursus et les équivalences, et renforcer les liens dans l'optique du renouvellement des accords : Portugal à l’IST de Lisbonne, En Allemagne à la TUM de Munich, au Royaume-Uni à l'Université de Glasgow, et en Espagne à l'Université de Séville.L’ISAE-SUPAERO souhaite continuer à promouvoir la mobilité des personnels enseignants et administratifs afin de développer des échanges de bonnes pratiques et la compréhension mutuelle avec les partenaires actuels ou potentiels.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-23-ASTR-0018
    Funder Contribution: 371,710 EUR

    With scientific and technological advances, our world is becoming more complex. In particular, operators, who benefit from these advances, are faced with increasingly sophisticated tasks. Despite advances in automation and artificial intelligence, humans still play an essential role in managing and supervising these complex systems. Although they remain more flexible than automated systems, they are still susceptible to errors. Statistics in aeronautics show, for instance, that human factors are at the origin of most serious accidents. A lever for action could be the creation of human performance models to understand how these errors occur and thus prevent them. Research in neuroergonomics has allowed the identification of neurophysiological markers of fatigue, mental load or attentional tunneling, which are factors that reduce performance (Dehais et al., 2020) or, on the contrary, markers of cognitive efficiency (Chenot et al., 2021). However, this research has most often focused on a single parameter of human functioning and via the prism of a single method of investigation (electrophysiology, electrocardiography, behavior, etc.). This results in the absence of a holistic approach to the understanding of human physiology and cognition in the context of complex tasks. The MPH project therefore aims at developing and validating in an operational situation a complete psychophysiological model of human performance during complex tasks, applicable to civilian or military people in learning situations (e.g., students, engineers, medical interns, etc.) or in complex systems management situations (e.g., airplane or drone pilots) through 3 objectives : 1. Predict human performance from intrinsic measures. The aim is to predict performance during the realization of complex tasks, and in particular errors, from intrinsic psychophysiological measures. Correlations will be made between cognitive/physiological functioning (cognitive architecture and/or functional brain connectivity) measured at rest and performance on complex tasks. 2. Build a mental state estimation tool. Norms will be established on a large sample of individuals who will be subjected to a battery of complex tasks and physiological measures. All these measures will allow a complete and robust modeling of human performance. Machine learning algorithms based on physiological signals (brain, heart and eye activity) will be developed to estimate mental state during complex tasks. 3. Operational validation. The validation of this tool will be done by testing it on new complex tasks (i.e., transfer) in operational situations during ecological experiments (drone simulators with military and civilian pilots and aircraft simulators with civilians). The MPH project could have a direct impact on : - Academic and fundamental research, by providing a qualitative, quantitative and perennial database, which can serve as a foundation for numerous research projects on the links between physiological activity and cognitive performance. - Applied research (in particular in aeronautics) by providing a model of human performance usable in ecological situations (TRL level 4 to 5), with the aim of improving safety in risky systems.

    more_vert
  • Funder: European Commission Project Code: 956703
    Overall Budget: 3,555,120 EURFunder Contribution: 3,555,120 EUR

    Icing affects the operational safety of much of our transport and general infrastructure. Although in the last decade there have been promising advancements in surface engineering and materials science, to achieve an effective and sustainable anti-icing technology requires that the physical processes involved in icing are better understood and applied to a rational design of anti-icing surfaces and systems. Furthermore, the arrival of hybrid or fully-electric engines, requires that new technologies also be developed for ice protection purposes suited to these new aircraft types. Already today, all new electric urban air mobility and unmanned aerial systems (UAS) developers and start-ups are experiencing difficulties in finding icing and inclement weather specialists. This is because such training is very specialized and the required skills take years to develop. SURFICE will address both aspects. 13 talented early stage researchers will be trained by an international, interdisciplinary and intersectoral consortium of experts in materials and surface science, physics and engineering. The project will address three major research objectives: (i) investigate icing physics on complex surfaces to understand and model ice formation, accretion and adhesion; (ii) achieve rational design for anti-icing materials and coatings based on a novel concept of discontinuity-enhanced icephobicity; and (iii) develop new technologies for efficient ice prevention and control. The proposed anti-icing solutions will be directly applied in aeronautics, energy systems and sensor technologies, as well as glass manufacturing and automotive industry through industrial partners. Intertwining surface science and engineering will benefit icing research, but also other innovative emerging technologies, where surface phenomena play a crucial role. Training on scientific, transferable and entrepreneurial skills will complete the CVs of the young researchers providing an innovation-oriented mind-set.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-12-BS01-0001
    Funder Contribution: 238,247 EUR

    The detection of cancer, and in particular of breast cancer, is a major public health issue. This project is about an alternative to conventional imaging techniques for early cancer detection. Thermoacoustic tomography (TAT) is a non invasive imaging technique based on ultrasound waves. Even though TAT is at an early stage of development, it is quite promising since, compared to other imaging techniques such as X-ray tomography of MRI or emission tomography, it relies on simple and relatively cheap equipment. It is particularly well adapted for imaging tissues of weak density, and is very likely to become a major tool for mammography, and possibly for brain imaging. The development of non invasive and non ionizing imaging techniques is particularly important for early detection of breast cancer in young patients, whose mammograms usually have poor contrast. The aim of this project is both theoretical and experimental. It calls upon competences in modelling (in mathematics as well as acoustics and optics), numerical analysis and experimental physics. On the mathematical side, the 'macroscopic' models for ultrasound tomography (UT), thermoacoustic tomography (TAT) and photoacoustic tomography (PAT) are the same and these techniques are often studied in the same way. In particular, the simplest model yields an inverse problem in integral form, in which the spherical Radon transform must be inverted (in the wide sense). However, the models can be refined so as to account for the various source terms and the specific wavelengths of the input wave. The change in scale and the microscopic and mesoscopic effects related to the propagating medium can't be neglected in these refined models, which then take the form of coupled partial differential equations. Usually the associated inverse problem is solved with inversion techniques for the Radon operator. However, these techniques do not allow to take into account complex models and we propose a variational approach. So we may get rid of the limitations of theses methods. Therefore, the aim of this project is: • to establish relevant models for photoacoustic tomography and more generally ultrasonic tomography (UT), which account for micro and mesoscopic optical effects related to the medium; • to develop techniques from variational analysis and optimal control for the reconstruction of images (inverse problems) and to compare these techniques with standard inversion approaches; • to write efficient numerical codes for both the direct and inverse problems; • to conduct experiments in order to validate and refine models for UT, TAT and PAT ; • at last, to optimize the data acquisition process (for example, if possible, determine the optimal locus of pressure detectors) with experiments performed at each step.

    more_vert
  • Funder: European Commission Project Code: 248016
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.