Powered by OpenAIRE graph
Found an issue? Give us feedback

Innovate UK

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
118 Projects, page 1 of 24
  • Funder: UK Research and Innovation Project Code: EP/G037574/1
    Funder Contribution: 5,703,940 GBP

    The emergence of a global ubiquitous computing environment in which each of us routinely interacts with many thousands of interconnected computers embedded into the everyday world around us will transform the ways in which we work, travel, learn, entertain ourselves and socialise. Ubiquitous computing will be the engine that drives our future digital economy, stimulating new forms of digital business and transforming existing ones.However, ubiquitous computing also carries considerable risks in terms of societal acceptance and a lack of established models of innovation and wealth creation, so that unlocking its potential is far from straightforward. In order to ensure that the UK reaps the benefits of ubiquitous computing while avoiding its risks, we must address three fundamental challenges. First, we need to pursue a new technical research agenda for the widespread adoption of ubiquitous computing. Second, we must understand and design for an increasingly diverse population of users. Third, we need to establish new paths to innovation in digital business. Meeting these challenges requires a new generation of researchers with interdisciplinary skills in the technical and human centred aspects of ubiquitous computing and transferable skills in research, innovation and societal impact.Our doctoral training centre for Ubiquitous Computing in the Digital Economy will develop a cohort of interdisciplinary researchers who have been exposed to new research methods and paradigms within a creative and adventurous culture so as to provide the future leadership in research and knowledge transfer that is necessary to secure the transformative potential of ubiquitous computing for the UK digital economy. To achieve this we will work across traditional research boundaries; encourage students to adopt an end-to-end perspective on innovation; promote creativity and adventure in research; and place engagement with society, industry and key stakeholders at the core of our programme.Our proposal brings together a unique pool of researchers with extensive expertise in the technologies of ubiquitous and location based computing, user-centred design, societal understanding, and research and training in innovation and leadership. It also involves a wide spectrum of industry partners from across the value chain for ubiquitous computing, spanning positioning, communications, devices, middleware, databases, design, and our two driving market sectors of the creative industries and transportation.Our training programme is based on the approach of personalised pathways that develop individual students' interdisciplinary and transferable skills, and that produce a personal portfolio to showcase the skills and experience gained alongside the more traditional PhD thesis. It includes a flexible taught programme that emphasises student-led seminars, short-fat modules, training projects and e-learning as delivery mechanisms that are suited to PhD training; an industrial internship scheme under which students spend three months working at an industrial partner; and a PhD research project that builds on a proposal developed during the first year of training and that is supported by multiple supervisors from different disciplines with industry involvement. Our DTC will foster a community of researchers through a dedicated shared space, a programme of community building events, training for supervisors and well as students, funding for a student society, and an alumni programme.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E040551/1
    Funder Contribution: 515,959 GBP

    Summary: A novel laboratory scale continuous hydrothermal flow synthesis (CHFS) system has been developed for the controlled synthesis of inorganic nano-materials (particles <100nm) with potential commercial applications from sunscreens and battery materials to fuel cell components and photocatalysts. The CHFS system has many advantages; it is a green technology (using supercritical water as the reagent), which utilises inexpensive precursors (metal nitrate salts) and can controllably produce high quality, technologically important functional nano-materials in an efficient single step (or fewer steps than conventionally). This project seeks to move the existing laboratory scale CHFS system (developed over the past few years at QMUL) towards a x10 pilot scale-up (nano-powder production of up to 500g per 12h depending on variables). The proposed research will initially compare the ability to control particle characteristics of the CHFS system at the laboratory scale over a large range of process variables (flow rates, temperatures, pressures, etc), building full operational envelopes that will describe reactor variables versus particle properties for each material. In particular, we will utilise process analytical technology (PAT)and the data will help develop univariate and multivariate understanding of the temporal operational spaces and interactions between process variables and product quality. PATand chemometrics incorporated with combined computational fluid dynamics modelling of hydrodynamics/mixing and population balance modelling of particle size evolution via nano-precipitation will be used to study alternative nozzles designs and other potential bottleneck factors. This will lead to a generic strategy for scaling up and controlled manufacture of nanomaterials with consistent, reproducible and predictable quality. The scale up quantities of nano-powders from the pilot plant will allow industrial partners to perform prototyping or comprehensive commercial evaluation of nano-powders in a range of applications which they have hitherto not been able to conduct due to lack of sufficient high quality material. Importantly, the know-how acquired on the project and the proposed feasibility studies will reduce the risk and commercial barriers for industry that might consider building a larger industrial scale CHFS plant in the future.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K034448/1
    Funder Contribution: 5,656,180 GBP

    The microprocessor is one of the most significant scientific inventions of the 20th century, with over 10 billion processors sold in 2011, and forecasts predict over 40 billion processors will be sold by 2020. The global market is worth over 20 billion euro with annual growth rates of 14%. Microprocessors and computing systems have tremendous positive impact on everyday life, from the internet to consumer electronics, transportation, healthcare and manufacturing. In the future, embedded computing systems - many of which will be low-power mobile devices - will be amongst the most powerful tools for tackling global economic and societal challenges. Continuing advances in microprocessor and embedded system design are the key to achieving this. Computing systems, however, are facing a once-in-a-generation technical challenge: the relentless increase in processor speed to improve performance of the past 50 years has come to an end. As a result, computing systems are being forced to switch from a focus on performance-centric serial computation to energy-efficient parallel computation. This switch is driven by the higher energy-efficiency of using many slower parallel processor cores instead of a single high-speed one. This switch has attracted worldwide attention and the term "multi-core", and subsequently "many-core" came into widespread use to generally describe the vision of computing systems with 100s of processor cores. Today this is one of the most dynamic areas of computer science and electronics because of its huge potential commercial and academic impact. We already see processors with many-cores in high performance and cloud computing, examples are the Cisco 188-core Metro, Intel 80-core Terascale, and IBM 64-core Cyclops chips. While mobile and embedded devices are starting to emerge with dual- and quad-cores, such as the ARM Cortex-A7, these are only embryonic examples and we are yet to see the future of high performance mobile and embedded systems featuring many-core processors. The ability of these systems to compute, communicate, and respond to the real-world will transform how we work, do business, shop, travel, and care for ourselves, ultimately transforming our daily lives and shaping the emergence of a new digital society for the 21st century. We envisage the tremendous prospect of entirely new forms of high-performance embedded systems to complement, enhance and in some cases supersede existing systems in a wide range of applications such as telecommunications, consumer electronics, transport and medical systems, where energy and reliability are central. Many-core technology has been viewed as a way to improve performance at the processor level, but its profound implications on the energy efficiency and reliability of future embedded systems with 100s or 1000s of cores has not been studied in depth. Our vision is to enable the sustainability of many-core scaling by preventing the uncontrolled increase in energy consumption and unreliability through a step change in holistic design methods and cross-layer system optimisation. Delivering this science is the core research objective of PRiME. In more detail, it seeks to establish the new science and engineering that is needed to design future high-performance, energy-efficient and reliable embedded systems with many-core processors. To this end, it brings together four groups with world-leading expertise in the complementary areas of low-power, highly-parallel, reconfigurable and dependable computing and verified software design. Four internationally renowned experts will also contribute to PRiME as Visiting Researchers: J. Henkel, Karlsruhe Uni., embedded systems, V. Betz, Uni. Toronto, FPGA/CAD, M. Kaaniche, LASS-CNRS, dependability, and T. Roscoe, ETH-Zurich, operating systems.

    more_vert
  • Funder: European Commission Project Code: 318722
    more_vert
  • Funder: European Commission Project Code: 641003
    Overall Budget: 1,500,000 EURFunder Contribution: 1,500,000 EUR

    C-ENERGY 2020 is a 48 months Coordination and Support Action having the specific objectives to Ensuring high quality Energy NCP services for Horizon 2020 and related programmes applicants; Lowering entry barriers for Energy NCPs approaching EU Framework Programmes for R&I for the first time; Consolidating the network of Energy NCPs. C-ENERGY 2020 project will take into consideration the significant changes that Horizon 2020 has brought about the Energy NCP mandate. With its brand new approach to R&I Horizon 2020 demands Energy NCPs: a) to address their services to a wider target, b) to have specific multidisciplinary competences. C-ENERGY 2020, whose consortium is composed by experienced and less experienced Energy NCPs from 18 countries, will tackle these challenges building up the NCP capacity by organising benchmarking activities, at least 8 training sessions and 12 twinning schemes. The dialogue with energy participants will benefit of at least 2 enhanced cross-border brokerage events and 9 training sessions for stakeholders. The project will also take special care of outreaching activities by extending the collaboration with other NCP thematic networks, cooperating with EEN, working on partner search and cooperating on international relevant activities. Finally, communication within and outside the Energy NCP network and the dissemination of results will be ensured through the website, the development of promotion/information materials, the participation at major events and PR activities and an e-mail alert service/newsletter. Throughout the project special attention will be paid to the diversity of stakeholders in the energy sector, the gender dimension, as well as to establish links with other EU relevant initiatives, programmes and policies.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.