Powered by OpenAIRE graph
Found an issue? Give us feedback

TRL

Transport Research Laboratory (United Kingdom)
17 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: EP/G060894/1
    Funder Contribution: 135,532 GBP

    Much current discussion about transport and climate change focuses on the impact of transport on climate change. Indeed, many mitigation measures are focussed upon the transport change, and many mitigation measures are focussed upon the transport sector. However, FUTURENET recognizes that climate change also has an impact on transport. This impact has two dimensions: an engineering dimension derived from the interaction between climate design, weather events and the physical network, and a socio-economic dimension derived from the interaction between weather and climate and the patterns of transport demand. FUTURENET integrates both in assessing the future resilience of the UK transport system. This interdisciplinary approach will assist stakeholders in adapting the transport network and increasing resilience of critical transport infrastructure. Specifically FUTURENET seeks to develop a number of scenarios for how the transport system in the UK might look in 2050, and will investigate the resilience of each of these scenarios to the effects of climate change. The investigation will be carried out through the five work packagesa) WP1- The development of possible UK transport scenarios for 2050, through detailed literature surveys and the results of a number of expert workshops.b) WP2 - Identification of route corridor for study and development of an inventory of infrastructure that covers the complete range of infrastructure for the chosen route.c) WP3 - Models of the failure modes of transport systems, which will identify existing models and thresholds for the effects of climate on transport systems, and will develop new models where there are gaps in knowledge.d) WP4- Model development and application, which will develop an overarching model framework that will combine the models identified in WP3 with climate change scenarios and the transport scenarios outlined in WP1, to enable the resilience of different types of transport network to be evaluated.e) WP5 - Generic Tools and Dissemination, through which the results of the project will be made available in an accessible form to a wide variety of stakeholders, and the model of WP4 made available for application to other route corridors.FUTURENET brings together a wide variety of academic expertise spanning the engineering, environmental and social sciences, together with a diverse group of stakeholders in the transport industry. It has the potential both to develop a deeper understanding of the underlying science on the effects of climate change on transport systems and to provide information and useful tools on how such systems can be made more resilient.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V022636/1
    Funder Contribution: 1,097,290 GBP

    We are living in an unprecedented age where vast quantities of our personal data are continually recorded and analysed, for example, our travel patterns, shopping habits and fitness routines. Our daily lives are now tied into this evolving loop of data collection, leading to data-based automated decisions, that can make recommendations and optimise our routines. There is tremendous economic and societal value in understanding this deluge of unstructured disparate data streams. A key challenge in Artificial Intelligence (AI) research is to extract meaningful value from these data sources to make decisions that can be trusted and understood to improve society. The PASCAL research programme is focused on developing an end-to-end framework, from data to decisions, that naturally accounts for data uncertainty and provides transparent and interpretable decision-making tools. The algorithms developed throughout this research project will be generally-applicable in a wide range of application domains and appropriate for modern computer hardware infrastructure. All of the research and associated algorithms will be widely available through high-quality open-source software that will ensure the widest possible uptake of this research within the international AI research community. PASCAL will focus on two primary applications areas: cybersecurity and transportation, which will stimulate and motivate this research and ensure wide-spread impact within these sectors. To drive through the impact and uptake of this research within these sectors, we will work closely with committed strategic partners, GCHQ, the Heilbronn Institute of Mathematical Research, Transport Research Laboratory, the University of Washington and the Alan Turing Institute. Cybersecurity - The proliferation of computers and mobile technology over the last few decades has led to an exponential increase in recorded data. Much of this data is personally, economically and nationally sensitive and protecting it is a key priority for any government or large organisation. Threats to data security exist on a global scale and identifying potential threats requires cybersecurity experts to evaluate and extract critical intelligence from complex and evolving data sources. In order to model and understand the intricate patterns between these data sources requires complex mathematical models. The PASCAL programme will develop new algorithms that maintain the richness of these mathematical models and use them to provide interpretable and transparent decision recommendations. Autonomous vehicles (AV) - The transition to AVs will be the most significant global change in transportation for the past century. The economic benefit and successful implementation of this technology within the UK requires a thorough understanding of the risks posed by driverless vehicles and what new procedures are required to ensure human safety. Through PASCAL, we will develop a framework to artificially-generate realistic traffic scenarios to test AVs under a wide range of road conditions and create criteria to safely accredit AV vehicles in the UK.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K026631/1
    Funder Contribution: 1,672,020 GBP

    The resilience of building and civil engineering structures is typically associated with the design of individual elements such that they have sufficient capacity or potential to react in an appropriate manner to adverse events. Traditionally this has been achieved by using 'robust' design procedures that focus on defining safety factors for individual adverse events and providing redundancy. As such, construction materials are designed to meet a prescribed specification; material degradation is viewed as inevitable and mitigation necessitates expensive maintenance regimes; ~£40 billion/year is spent in the UK on repair and maintenance of existing, mainly concrete, structures and ~$2.2 trillion/year is needed in the US to restore its infrastructure to good condition (grade B). More recently, based on a better understanding and knowledge of microbiological systems, materials that have the ability to adapt and respond to their environment have been developed. This fundamental change has the potential to facilitate the creation of a wide range of 'smart' materials and intelligent structures. This will include both autogenous and autonomic self-healing materials and adaptable, self-sensing and self-repairing structures. These materials can transform our infrastructure by embedding resilience in the components of these structures so that rather than being defined by individual events, they can evolve over their lifespan. To be truly self-healing, the material components will need to act synergistically over the range of time and length scales at which different forms of damage occur. Conglomerate materials, which comprise the majority of our infrastructure and built environment, form the focus of the proposed project. While current isolated international pockets of research activities on self-healing materials are on-going, most advances have been in other material fields and many have focussed on individual techniques and hence have only provided a partial solution to the inherent multi-dimensional nature of damage specific to construction materials with limited flexibility and multi-functionality. This proposal seeks to develop a multi-faceted self-healing approach that will be applicable to a wide range of conglomerates and their respective damage mechanisms. This proposal brings together a consortium of 11 academics from the Universities of Cardiff, Bath and Cambridge with the relevant skills and experience in structural and geotechnical engineering, materials chemistry, biology and materials science to develop and test the envisioned class of materials. The proposed work leverages on ground-breaking developments in these sciences in other sectors such as the pharmaceutical, medical and polymer composite industries. The technologies that are proposed are microbioloical and chemical healing at the micro- and meso-scale and crack control and prevention at the macro scale. This will be achieved through 4 work packages, three of which target the healing at the individual scales (micro/meso/macro) and the fourth which addresses the integration of the individual systems, their compatibility and methods of achieving healing of recurrent damage. This will then culminate in a number of field-trials in partnership with the project industrial collaborators to take this innovation closer to commercialisation. An integral part of this project will be the knowledge transfer activities and collaboration with other research centres throughout the world. This will ensure that the research is at the forefront of the global pursuit for intelligent infrastructure and will ensure that maximum impact is achieved. One of the primary outputs of the project will be the formation and establishment of a UK Virtual Centre of Excellence in Intelligent Construction Materials that will provide a national and international platform for facilitating dialogue and collaboration to enhance the global knowledge economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S035362/1
    Funder Contribution: 13,850,000 GBP

    Rapidly developing digital technologies, together with social and business trends, are providing huge opportunities for innovation in product and service markets, and also in government processes. Technology developments drive socioeconomic and behavioural changes and vice versa, and the rate of change in these makes tracking and responding to high-speed developments a significant challenge in public and private sectors alike. Agile governance and policy-making for emerging technologies is likely to become a key theme in strategic thinking for the public and private sectors. Particular trends that are challenging now, and will increasingly challenge society include developments in technologies on the outskirts of the internet. These include Artificial Intelligence, not just in the cloud but in Edge computing, and in Internet of Things devices and networks. Alongside and in conjunction with this ecosystem, is Distributed Ledger Technology. Together this ensemble of technologies will enable innovations that promote productivity, like peer-to-peer dynamic contracts and other decision processes, with or without human sight or intervention. However, the ensemble's autonomy, proliferation and use in critical applications, makes the potential for hacking and similar attacks very significant, with the likelihood of them growing to become an issue of strategic national importance. To address this challenge, and to preserve the immense economic and productivity benefits that will come from the successful deployment and application of digital technologies 'at the edge', a focused initiative is needed. Ideally, this will use the UK's current platform of experience in the safe and secure application of the Internet of Things. The contributors to this platform include PETRAS partners, and several other centres of excellence around the UK. It is therefore proposed to build an inclusive PETRAS 2 Research Centre with national strategic value, on the established and successful platform of the PETRAS Hub. This will inherit its governance and management models, which have demonstrated the ability to coordinate and convene collaboration across 11 universities and 110 industrial and government User Partners, but will importantly step up its mission and inclusivity through open research calls for new and existing academic partners. PETRAS 2 will maintain an agile and shared research agenda that views social and physical science challenges with equal measure, and covers a broad range of Technology Readiness Levels, particularly those close to market. It will operate as a virtual centre, providing a magnet for collaboration for user partners and a single expert voice for government. User partner engagement is likely to be strong following the successes of the current PETRAS programme, which has raised over £1m in cash contributions from partners during 2018. The new PETRAS 2 'Secure Digital Technologies at the Edge' methodology will inherit the best of PETRAS, including open calls to the UK research community and a partnership-building fund that allows a responsive approach to opportunities that emerge from existing and new user and academic partnerships. PETRAS 2 will be driven by sectoral cybersecurity priorities while retaining a discovery research agenda to horizon-scan and develop understanding of new threats and opportunities. The scope of projects and the associated Innovate UK SDTaP demonstrators, spans early to late TRLs and aims to put knowledge into real user partner practice. Furthermore, the development of many early career researchers through PETRAS 2 research activities should lead to a step change in our national capability and capacity to address this highly dynamic area of socio-technical opportunity and risk.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K000314/1
    Funder Contribution: 2,311,580 GBP

    Infrastructure represents a large part of the UK's asset base, and its efficient management and maintenance are vital to the economy and society. The application of emerging technologies to advanced health monitoring of existing critical infrastructure assets can help to better quantify and define the extent of ageing and the consequent remaining design life of infrastructure, thereby reducing the risk of failure. Emerging technologies also have the potential to transform the industry through a whole-life approach to achieving sustainability in construction and infrastructure in an integrated way - design and commissioning, the construction process, exploitation and use, and eventual de-commissioning. Crucial elements of these emerging technologies include the application of the latest sensor technologies, data management tools and manufacturing processes to the construction industry, both during infrastructure construction and throughout its life. There is a substantial market for exploitation of these technologies by the construction industry, particularly contractors, specialist instrumentation companies and owners of infrastructure. In this proposal, we seek to build on the creation of the Innovation and Knowledge Centre for Smart Infrastructure and Construction which brings together leading research groups in the University of Cambridge Departments of Engineering and Architecture, Computer Laboratory and Judge Business School. The Collaborative Programme will see these groups working with industrialists and other critical stakeholders on challenging research projects which deliver practical solutions to the problems that industry faces and which promote the dissemination and adoption of valuable emerging technologies. The development and commercialisation of emerging technologies can provide radical changes in the construction and management of infrastructure, leading to considerably enhanced efficiencies, economies and adaptability. The objective is to create 'Smart Infrastructure' with the following attributes: (a) minimal disturbance and maximum efficiency during construction, (b) minimal maintenance for new infrastructure and optimum management of existing infrastructure, (c) minimal failures even during extreme events (fire, natural hazards, climate change), and (d) minimal waste materials at the end of the life cycle. The Centre focuses on the innovative use of emerging technologies in sensor and data management (e.g. fibre optics, MEMS, computer vision, power harvesting, Radio Frequency Identification (RFID), and Wireless Sensor Networks). These are coupled with emerging best practice in the form of the latest manufacturing and supply chain management approaches applied to construction and infrastructure (e.g. smart building components for life-cycle adaptive design, innovative manufacturing processes, integrated supply chain management, and smart management processes from building to city scales). It aims to develop completely new markets and to achieve breakthroughs in performance. Considerable business opportunities will be created for construction companies, and for other industries such as IT, electronics and materials. The Centre is able to respond directly and systematically to the input received from industry partners on what is required to address critical issues. Through the close involvement of industry in technical development as well as in demonstrations in real construction projects, the commercialisation activities of emerging technologies can be progressed to a point where they can be licensed to industry. The outputs of the Centre can provide the construction industry, infrastructure owners and operators with the means to ensure that very challenging new performance targets can be met. Furthermore breakthroughs will make the industry more efficient and hence more profitable. They can also give UK companies a competitive advantage in the increasingly global construction market.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.