Powered by OpenAIRE graph
Found an issue? Give us feedback

Ricardo (United Kingdom)

Ricardo (United Kingdom)

87 Projects, page 1 of 18
  • Funder: UK Research and Innovation Project Code: EP/S00081X/1
    Funder Contribution: 1,199,230 GBP

    Rapid and transformative advances in power electronic systems are currently taking place following technological breakthroughs in wide-bandgap (WBG) power semiconductor devices. The enhancements in switching speed and operating temperature, and reduction in losses offered by these devices will impact all sectors of low-carbon industry, leading to a new generation of robust, compact, highly efficient and intelligent power conversion solutions. WBG devices are becoming the device of choice in a growing number of power electronic converters used to interface with and control electrical machines in a range of applications including transportation systems (aerospace, automotive, railway and marine propulsion) and renewable energy (e.g. wind power generators). However, the use of WBG devices produces fast-fronted voltage transients with voltage rise-time (dv/dt) in excess of 10~30kV/us which are at least an order of magnitude greater than those seen in conventional Silicon based converters. These voltage transients are expected to significantly reduce the lifetime of the insulation of the connected machines, and hence their reliability or availability. This, in turn, will have serious economic and safety impacts on WBG converter-fed electrical drives in all applications, including safety critical transportation systems. The project aims to advance our scientific understanding of the impact of WBG devices on machine insulation systems and to make recommendations that will support the design and test of machines with an optimised power density and lifetime when used with a WBG converter. This will be achieved by quantifying the negative impact of fast voltage transients when applied to machine insulation systems, by identifying mitigating strategies that are assessed at the device and systems level and by demonstrating solutions that can support the insulation health monitoring of the WBG converter-fed machine, with support from a range of industrial partners in automotive, aerospace, renewable energy and industrial drives sectors.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V003534/1
    Funder Contribution: 776,895 GBP

    The presence of walls alters the thermo-chemical and fluid-dynamical processes associated with turbulent premixed flames. The increasing demands for light-weight combustors make flame-wall interactions (FWI) inevitable, which influence the cooling load, thermal efficiency and pollutant emission in these applications. However, this aspect has not yet been sufficiently analysed in the existing turbulent reacting flow literature because of the challenge this poses for both experimental and numerical investigations in terms of spatial and temporal resolutions among others. Therefore, a thorough physical understanding of the FWI mechanism is necessary to develop and design more energy-efficient and environmentally-friendly combustion devices. In this project, recent advances of both high-performance computing and experimental techniques will be utilised to analyse and model premixed FWI in turbulent boundary layers (TBLs). The proposed analysis will consider different FWI configurations (based on the orientation of the mean flame normal with respect to the wall) in turbulent channel flows and unconfined boundary layers (BLs) using state-of-the-art experiments and high-fidelity Direct Numerical Simulations for different wall boundary conditions. Experiments will utilize a suite of advanced laser diagnostics, providing new simultaneous measurement capabilities. DNS will simulate the turbulent flow without any recourse to physical approximations. The fundamental physical insights obtained from DNS and experimental data will be used to develop a novel hybrid RANS/LES approach for device-scale simulation of FWI, building on expertise in the context of Flame Surface Density (FSD) and Scalar Dissipation Rate (SDR) closures for Reynolds Averaged Navier Stokes (RANS) and Large Eddy Simulations (LES). The newly-developed models will be implemented to carry out hybrid RANS/LES of experimental configurations for the purpose of model validation. The project will offer robust and cost-effective Computational Fluid Dynamics (CFD) design tools for fuel-efficient and low-emission combustion devices (e.g. gas turbines, micro-combustors and automotive engines).

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M009424/1
    Funder Contribution: 2,999,600 GBP

    This research seeks to address the knowledge gap with the internal combustion engine (ICE) and answer the question 'how far can you go?'. The research considers methods for reducing fuel consumption of the ICE from two directions: first by improving in-cylinder combustion processes and second through the use of designed fuels from sustainable sources, with the fuel chemistry matched to advanced high efficiency combustion systems. Three novel ICE concepts, aimed at achieving a step improvement of 20-33% reduction in fuel consumption from ICEs at near zero emissions will be investigated, with holistic integration of energy recovery (WP1). The concepts investigated are applicable to commercial vehicles, passenger cars and as electric vehicle range extenders. Novel designed fuels, will be investigated in WP2, including how the fuel molecule can be tailored to improve the ignition and combustion characteristics of the fuel in a novel ICE combustion system. The spray and ignition processes of the new fuels will be characterised through the application of optical diagnostic techniques. WP3 covers the simulation of the ICE combustion concepts and evaluation of current state of the art modelling methods when applied to such combustion systems and designed fuels, with potentially very different fluid characteristics to conventional diesel and petrol. Novel optical diagnostic techniques, including two line Planer Induced Fluorescence to track the vapour concentration and laser induced thermal grating spectroscopy to measure vapour temperature will be developed in WP4 and applied to the research in WP1 and WP2, providing validation for the modelling in WP3.

    more_vert
  • Funder: UK Research and Innovation Project Code: 400134
    Funder Contribution: 1,804,250 GBP

    The Syner-D project is a collaborative group working on the technologies and software required to significantly reduce the CO2 output and enhance the performance feel of a premium brand diesel passenger car. It will meet future worldwide emissions standards by use of engine and aftertreatment technologies. The partner contributions have further extended the knowledge of the benefits and constraints these respective technologies offer. Deploying these technologies into future mainstream programmes will bring a major competitive advantage to the project members.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/W034700/1
    Funder Contribution: 465,816 GBP

    Hydrogen is the simplest fuel, yet it has very different characteristics compared to common hydrocarbons: (a) high energy release per unit mass, (b) very high diffusivity, and (c) high reactivity. These three factors result in high flame speeds, which peak at around ten times those of hydrocarbons, and extremely wide flammability limits, from 3 to 95 percent in air. Hydrogen also has a propensity to form unstable flame surfaces owing to thermo-diffusive instabilities associated with the very light nature of hydrogen molecules, which form long finger-like leading edges, and very thick reaction zones, which means that the way in which we describe the physics of flames for other hydrocarbons does not work well for hydrogen. In this project we aim to develop simulations and experiments that will unveil quantitatively how these instabilities affect the reaction rate and local species formation, allowing the development of models that can be used in new carbon-free engines and gas turbines. The project will use direct numerical simulations and experiments of a stabilised hydrogen flame at atmospheric pressure and temperature, for a range of hydrogen/oxygen ratios and dilution. The experimental database will for the first time generate reconstructed 3D flame surfaces and velocities, joint two-dimensional temperature, OH radical measurements and one-dimensional hydrogen species concentrations. The numerical database will produce simulations overlapping with the experiments, as well as an extension of conditions inaccessible to experiments to higher pressures of up to 5 times atmospheric. The combination of matched experimental and numerical data will enable direct comparison, to explore the instability behaviour and dependence on reactant conditions, confirm numerical predictions, and use more complete DNS data to extrapolate from lower-fidelity experimental data. The particular issues of thermodiffusive instabilities are also relevant to other potential reactive mixtures, and some of the findings may be generalisable to other physical situations. More immediately, the research is also supported by industrial partners at the leading edge of development of hydrogen-based land and air propulsion, and findings from the proposed research will be immediately incorporated into models for turbulent combustion used at the collaborating facilities.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.