Powered by OpenAIRE graph
Found an issue? Give us feedback

USTC

University of Science and Technology of China
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
5 Projects, page 1 of 1
  • Funder: European Commission Project Code: 909658
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-15-JCLI-0001
    Funder Contribution: 378,920 EUR

    The ability to predict forest fire activity at monthly, seasonal, and above-annual time scales is critical to mitigate its impacts, including fire-driven dynamics of ecosystem and socio-economic services. Fire is the primary driving factor of the ecosystem dynamics in the boreal forest, directly affecting global carbon balance and atmospheric concentrations of the trace gases including carbon dioxide. Resilience of ocean-atmosphere system provides potential for advanced detection of upcoming fire season intensity. There is a strong potential in using a large body of paleo- and dendrochronological reconstructions to improve predictability of weather extremes such periods of regionally increased fire activity. We propose that joint analyses of historical fire proxies (fire scars and charcoal in the lake sediments) with independently obtained proxies of climate variability and vegetation cover should contribute towards better knowledge of modern climate drivers of forest fires and predictability of fire activity at multiple temporal scales. In this project we will identify climatic drivers controlling boreal fire activity and its predictability at monthly, seasonal and annual timescales by relying on analyses of multiple proxies of modern and historic fire activity, and climate-ocean variability. We will also provide monthly to century-scale predictions of future fire activity and to translate these into impacts on ecosystem services and metrics of socio-economic performance. We argue that capitalizing on multi-proxy data comparisons should improve predictability of fire activity via (a) a large overlap between climate and fire proxies, which dramatically extends the period covered by instrumental observations and improves robustness of analyses, (b) a more realistic translation of fire hazard metrics into actual fire activity, and (c) a better separation of low vs. high frequency variability in the fire activity, an important aspect in the modeling of the future trends in fire activity.

    more_vert
  • Funder: European Commission Project Code: 641277
    Overall Budget: 2,268,750 EURFunder Contribution: 2,268,750 EUR

    We are on the verge of a new scientific and technological era as the first quantum simulators able to investigate physical systems that cannot be studied classically are about to be built in the laboratories. Controlling and probing complex quantum systems is of paramount importance for the implementation of these devices. Quantum simulators are controllable complex quantum systems that emulate the behaviour of other quantum systems whose properties cannot be easily tested. While several models of quantum simulators are currently under construction, the development of effective probing techniques is still lagging behind, despite their crucial role. In most of the quantum simulator experiments measurement techniques are invasive and destructive, destroying not only the very quantum properties from which the simulator stems, but often also the quantum system itself. QuProCS works on the development of a radically new approach to probe complex quantum systems for quantum simulations, based on the quantification and optimisation of the information that can be extracted by an immersed quantum probe as opposed to a classical one. The team will theoretically investigate and experimentally implement quantum information probes to detect and characterise quantum correlations, quantum phase transitions, transport properties, and nonequilibrium phenomena in ultracold gases. By a shift in perspective to a complementary viewpoint, we will at the same time investigate experimentally, in a quantum optical platform, how changing the properties of the environment via reservoir engineering modifies the behaviour of the quantum probe. We will develop optimal probing strategies to read out and benchmark quantum simulators, thus providing the most crucial ingredient for commercial devices.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-14-CE26-0028
    Funder Contribution: 269,081 EUR

    Spin-polarized electron transport in semiconductors has been proposed as the basis for an entirely new class of electronic devices. Exploiting the electron spin in semiconductors for this purpose is appealing thanks to: 1) three orders of magnitude longer of spin-coherence time than metal systems; 2) possibility of integrating logic operations, communications and storage within the same materials technology; 3) coherent spin-enabled device operating at the precession frequency of electron spins (from GHz to THz); 4) spin accumulation over long distances and the associated pure spin currents generation. As a core material of semiconductor electronic device, silicon also shows its excellent characteristic in spintronics. The weak spin–orbit coupling in Si results in a very long spin lifetime (µs timescale at 60K), which is several orders of magnitude larger than other semiconductors like GaAs. By using Si to transport spin over long distance and using SiGe to control spin orientation with electric field, a variety of novel functionalities can be designed for future Si-based spintronics devices. In addition, as the n-type dopant 31P in Si has a nuclear spin s=1/2 with 100% in isotropy and 95% of Si is 28Si which has zero nuclear spin, this provide an ideal material background to study the hyperfine interaction of nuclear spin and electron spin in order to use 31P nuclear spin as a solid-state quantum memory for quantum computation. The aim of this project is to take advantage of our recent developed ultra-high vacuum (UHV) wafer bonding technology to fabricate vertical structure with alternating ferromagnetic metal (FM) and SiGe semiconductor (SC) materials. The ability to fabricate such structures, mostly impossible with classical growth techniques like MBE, will give us the opportunity to 1) study the spin-transport properties in Si, Ge, SixGe1-x alloy and SiGe nanostructures (QWs and QDs) in two different regimes: non-equilibrium and equilibrium; 2) explore the possibility to use highly spin-polarized electron to interact and communicate with nuclear spin via electron-nuclear spin hyperfine interaction; 3) discover new mangetoresistance effect combining with the quantum well states and coulomb blockade inside Si tunnel barrier; 4) generate multi-states spin photocurrent by using light as an addition control tool. This project could have a significant impact to the actual information and communication technology.

    more_vert
  • Funder: European Commission Project Code: 671461
    Overall Budget: 1,511,780 EURFunder Contribution: 1,494,780 EUR

    The aim of the HySEA project is to conduct pre-normative research on vented deflagrations in enclosures and containers for hydrogen energy applications. The ambition is to facilitate the safe and successful introduction of hydrogen energy systems by introducing harmonized standard vent sizing requirements. The partners in the HySEA consortium have extensive experience from experimental and numerical investigations of hydrogen explosions. The experimental program features full-scale vented deflagration experiments in standard ISO containers, and includes the effect of obstacles simulating levels of congestion representative of industrial systems. The project also entails the development of a hierarchy of predictive models, ranging from empirical engineering models to sophisticated computational fluid dynamics (CFD) and finite element (FE) tools. The specific objectives of HySEA are: - To generate experimental data of high quality for vented deflagrations in real-life enclosures and containers with congestion levels representative of industrial practice; - To characterize different strategies for explosion venting, including hinged doors, natural vent openings, and commercial vent panels; - To invite the larger scientific and industrial safety community to submit blind-predictions for the reduced explosion pressure in selected well-defined explosion scenarios; - To develop, verify and validate engineering models and CFD-based tools for reliable predictions of pressure loads in vented explosions; - To develop and validate predictive tools for overpressure (P) and impulse (I), and produce P-I diagrams for typical structures with relevance for hydrogen energy applications; - To use validated CFD codes to explore explosion hazards and mitigating measures in larger enclosures, such as warehouses; and - To formulate recommendations for improvements to European (EN-14994), American (NFPA 68), and other relevant standards for vented explosions.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.