Powered by OpenAIRE graph
Found an issue? Give us feedback

FSU

Friedrich Schiller University Jena
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
178 Projects, page 1 of 36
  • Funder: European Commission Project Code: 101088027
    Overall Budget: 1,999,910 EURFunder Contribution: 1,999,910 EUR

    RNA is common to all organisms. Despite its major function as the coding agent for protein synthesis, an increasing number of regulatory roles have been assigned to RNA. In bacteria, small RNAs (sRNAs) constitute the best-studied class of non-coding regulators estimated to control ~20% of all genes in a given organism. Most sRNAs affect gene expression by base-pairing with multiple target mRNAs resulting in either gene repression or activation. sRNA regulators are modular, versatile, and highly programmable, and thus have gathered momentum as control devices in synthetic biology and biotechnology. My group has recently established artificial sRNAs as a potent genetic tool to screen, detect, and characterize microbial phenotypes. We have now extended this method by a novel sequencing approach, called LIGseq, allowing us to map sRNA-target interactions at the population level and in a high throughput manner. We have further shown that sRNAs expressed from the 3’ untranslated regions (UTRs) of mRNAs can serve as tuneable autoregulatory elements and thus bear ample possibilities for the design of artificial gene networks. I therefore posit that artificial sRNAs are powerful, yet understudied control elements of the synthetic biology toolbox with largely untapped regulatory potentials. I thus propose to: 1) exploit artificial sRNAs to investigate the molecular principles underlying target selection and RNA duplex formation by bacterial non-coding RNAs, 2) harness the power of artificial sRNAs to study essential gene functions and the mechanisms underlying antibiotic resistance in bacteria, 3) employ 3’UTR-derived sRNAs as programmable feedback devices in synthetic gene regulatory circuits. This combined work will generate the molecular framework to employ artificial sRNAs for synthetic biology applications and shed new light on medically relevant processes, such as antibiotic resistance of microbial pathogens.

    more_vert
  • Funder: European Commission Project Code: 753540
    Overall Budget: 171,461 EURFunder Contribution: 171,461 EUR

    The research project “Thinking in Images. Herder’s Adrastea from 1801-03 up to today” will focus on the notion of thinking in images, which has a non-marginal position in the history of philosophy and science. Thinking in images means to refer, at the same time, to a complex system of forms and meanings, which continually changes itself and never follows a time sequence or a causal order. This is what distinguishes this special form of thinking from the logical sequence, from the reasoning by concepts. Analogies, metaphors, myths are only few examples of the way this ‘visual representation’ works. Such a kind of thinking characterises the children’s thought, mnemonic processes, dreams, mental illnesses, hallucinations; but also, it is possible to find it in the poetry, in mythologies and religions, in mystical visions, as well as in scientific visualisations and in the arts. We will try in this study to clarify the concept of thinking in images and to highlight its value within society and culture. The starting point of the research is one of the most significant authors in the history of philosophy and culture, J.G. HERDER (1744-1803). The researcher’s aim will be to make an Italian translation and a critical edition of the Adrastea (1801-1803), the last and most neglected of HERDER’s works. The researcher will show the importance of this work as regards the author’s position about this topic, thinking in images and will prepare a monography. HERDER edited this magazine the last years of his life and conceived it as a kind of fragmentary encyclopaedia, touching many aspects of the cultural life of his time (from politics to religion, from philosophy to science, from literature and music to esotericism and mystics). From this starting point, researcher will be able to start a multidisciplinary discussion on the topic through the organisation of seminars, workshop and international conferences with the involvement of scholars of different fields of research.

    more_vert
  • Funder: European Commission Project Code: 891734
    Overall Budget: 1,453,940 EURFunder Contribution: 1,453,940 EUR

    Fully nonlinear partial differential equations (PDE) arise in many applications ranging from physics to economy. They are different from PDEs in mechanics, and the PDE theory relies on the generalized solution concept of so-called viscosity solutions. Monotone finite difference methods (FDM) are provably convergent for approximating viscosity solutions, but are restricted to regular meshes and low-order approximations, thus having limitations in resolving realistic geometries or dealing with local mesh refinement. As viscosity solutions are lacking smoothness properties in general, adaptive approximations are desirable. In contrast to FDM, finite element methods (FEM) offer the possibility of high-order approximations with flexibility in adaptive and automatic mesh design. However, provably convergent FEM formulations for viscosity solutions to nonvariational problems are as yet unknown. With a background in the numerical analysis of PDEs, especially the theory of FEM and adaptive algorithms, DAFNE aims at laying the theoretical and practical foundation for the application of FEM and automatic mesh-refinement algorithms to fully nonlinear equations. The focus is on the large class of Hamilton-Jacobi-Bellman (HJB) equations. They originated from stochastic control problems, but more generally comprise many classical and relevant equations like Pucci's equation or the Monge-Ampère equation with applications in finance, optimal transport, physics, and geometry. The novel approach is to estimate local regularity properties through the control variable in the HJB formulation. This (a) gives rise to new regularization strategies and (b) indicates where the mesh needs to be refined. Both achievements are key to the design of a new FEM formulation. The project is at the frontiers of PDE analysis, numerical analysis, and scientific computing. The long-term goal is to establish the first convergence proofs for adaptive FEM simulations of fully nonlinear phenomena.

    more_vert
  • Funder: European Commission Project Code: 772676
    Overall Budget: 1,901,400 EURFunder Contribution: 1,901,400 EUR

    This project aims at developing theoretical and numerical methods to simulate space- and time-resolved ultrafast dynamics in novel hybrid molecular-metal nanoparticle systems. The excitation of collective electron dynamics inside the metallic nanoparticles induced by external light fields leads to strongly re-shaped electromagnetic near-fields with complex spatial and temporal profile. The interaction of these modified and enhanced near-fields with molecules located in close vicinity to the metallic nanoparticle is the origin of many astonishing physical and chemical phenomena, such as the formation of new quasi-particles, new mechanisms for chemical reactions or the ultra-high spatial resolution and selectivity in molecular detection.. Besides being of fundamental interest, this interplay between near-fields and molecules promises great potential on the application side, potentially enabling revolutionary breakthrough in new emerging technologies in a broad range of research fields, such as nanophotonics, energy and environmental research, biophotonics, light-harvesting energy sources, highly sensitive nano-sensors etc. This necessitates a solid theoretical understanding and simulation of these hybrid systems. The goal of project QUEM-CHEM is the development of new approaches and methods beyond the state of the art, aiming at a synergy of existing but independently applied methods: • Quantum chemistry (QU) in order to calculate the quantum nature of the molecule-metallic nanoparticle moiety, • Electro-dynamic simulations (EM) describing the complex evolution of the light fields and the near fields around nanostructures, as well as • Dynamical methods to incorporate the response of the molecule to the near-fields Thus, the possible outcome of this highly interdisciplinary project will provide new knowledge in both, physics and chemistry, and might have impact on a large variety of new arising critical technologies.

    more_vert
  • Funder: European Commission Project Code: 2014-1-DE01-KA103-000285
    Funder Contribution: 518,148 EUR

    Die Universität Jena nimmt seit über 20 Jahren sehr aktiv am Erasmus-Programm teil. Es ist das erfolgreichste Europäische Mobilitätsprogramm und somit auch das gößte Austauschprogramm der Universität Jena, da wir hierüber jährlich ca. 280 - 300 Studierende und ca. 25 Mitabreiter/-innen ins europäische Ausland entsenden und auch fördern können. Ziel des Programms an der Universität ist es so vielen Studierenden und Personal wie möglich die Möglichkeit eines Auslandsaufenthalts zu bieten. Im akademischen Jahr 2014/15 ( Projekt 2014) wurden Mittel für 300 Studierendenmobilitäten beantragt. Hiervon konnten wir 280 Studierende aus den Mitteln der EU fördern. Die meisten Studierenden bevorzugen das westliche Ausland, hier besonders Großbritannien, Spanien und Frankreich sowie Norwegen und Schweden. Im Zuge der stärkeren Internationalisierung unserer Hochschule ist es ein wichtiges Ziel die Mobilität unserer Studierenden im allgemeinen zu steigern. Leider ist dies gegenüber dem Vorjahr (2013/14: SMS 281) nicht erkennbar. Studierende weichen zunehmend auf kürzer Auslandsaufenthalte, z.B. Praktika im Ausland aus, um ihren geplanten Studienablauf nicht zu stören.Die größere Kohorte an Studierenden befindet sich zum Zeitpunkt des Auslandsuafenthalts im grundständigen Studiengang (Bachelor, Staatsex.). Aber auch die fortgeschrittenden Masterstudierenden sind noch sehr mobil. Lehramtsstudiernde suchen sich häufig andere Formate für ihren Auslandsaufenthalt, z.B. Lehrpraktika oder PAD-Programme, da hier der Praxisbezug eine große Rolle im Karriereweg spielt.Gastdozenten sollen durch ihren Aufenthalt die europäische Dimension der Gasthochschule stärken, deren Lehrangebot ergänzen und ihr Fachwissen Studierenden vermitteln, die nicht im Ausland studieren wollen oder können. Nach Möglichkeit sollte dabei die Entwicklung gemeinsamer Studienprogramme der Partnerhochschulen ebenso wie der Austausch von Lehrinhalten und -methoden eine Rolle spielen. Im Bereich Lehrkräftemobilität ist an der Universität Jena eine Stagnation festzustellen. Es wurden 30 Mobilitäten geplant bzw. beantragt. Davon wurden im Jahr 2014/15 (Projekt 2014) 21 Lehraufenthalte im Ausland realisiert.Im Bereich Personalmobilität ist eine steigende Nachfrage festzustellen. Im Jahr 2014/15 (Projekt 2014) wurden 8 Mobilitäten beantragt, jedoch 13 Mobilitäten gefördert und durchgeführt. Hier ist eine außerordentliche Steigerung gegenüber dem Vorjahr erkennbar (2013/14: 5 STT). Grund hierfür scheint das großartige Angebot an Staff Training Weeks zu sein. Diese Art von Mobilität spricht das Personal in zunehmenden Maße an.Das Internationale Büro ist äußerst bemüht ein umfamgreiches Informationsangebot für jede Zielgruppe zu bieten. Es werden regelmäßige Informationsveranstaltungen sowohl für Studierende als auch Wissenschaftler und anderes Personal angeboten sowie jederzeit eine individuelle Beratung ermöglicht. Beides wird in hohem Maße von den betreffenden Studierenden und Mitarbeitern angenommen. Große Unterstützung gibt es seitens der Fachbereiche durch die fachliche Koordination.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.